Spaces:
Runtime error
Runtime error
File size: 18,424 Bytes
c5ca37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conditional text generation with the auto-regressive models of the library (GPT/GPT-2/Transformer-XL/XLNet)
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import glob
import logging
import os
import pickle
import random
cwd = os.getcwd()
print(f"Current working dir is {cwd}")
import sys
sys.path.append('./')
pt_path = os.path.join( cwd, 'pytorch_transformers')
sys.path.append(pt_path)
print(f"Pytorch Transformer {pt_path}")
import torch
import torch.nn.functional as F
import numpy as np
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_transformers import GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig, BertConfig
from pytorch_transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2ForLatentConnector
from pytorch_transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer
from pytorch_transformers import XLNetLMHeadModel, XLNetTokenizer
from pytorch_transformers import TransfoXLLMHeadModel, TransfoXLTokenizer
from pytorch_transformers import BertForLatentConnector, BertTokenizer
import pytorch_transformers
from collections import defaultdict
from modules import VAE
from utils import (TextDataset_Split, TextDataset_2Tokenizers, BucketingDataLoader)
from metrics import Bleu, SelfBleu
import pdb
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig)), ())
MODEL_CLASSES = {
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
'bert': (BertConfig, BertForLatentConnector, BertTokenizer)
}
# Padding text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia
# in https://github.com/rusiaaman/XLNet-gen#methodology
# and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e
PADDING_TEXT = """ In 1991, the remains of Russian Tsar Nicholas II and his family
(except for Alexei and Maria) are discovered.
The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
remainder of the story. 1883 Western Siberia,
a young Grigori Rasputin is asked by his father and a group of men to perform magic.
Rasputin has a vision and denounces one of the men as a horse thief. Although his
father initially slaps him for making such an accusation, Rasputin watches as the
man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
with people, even a bishop, begging for his blessing. <eod> </s> <eos>"""
def set_seed(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def load_and_cache_examples(args, tokenizer, evaluate=False):
if isinstance(tokenizer, list):
dataset = TextDataset_2Tokenizers(tokenizer, args, file_path=args.eval_data_file if evaluate else args.train_data_file, block_size=args.block_size)
else:
dataset = TextDataset_Split(tokenizer, args, file_path=args.eval_data_file if evaluate else args.train_data_file, block_size=args.block_size)
return dataset
def build_dataload_and_cache_examples(args, tokenizer, evaluate=False):
if isinstance(tokenizer, list):
if not evaluate:
args.batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
file_path=args.train_data_file
else:
args.batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
file_path=args.eval_data_file
dataloader = BucketingDataLoader(file_path, args.batch_size, args.max_seq_length, tokenizer, args, bucket=100, shuffle=False)
else:
pass
return dataloader
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
# top-k
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
# top-p
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
def sample_sequence(model, length, context, num_samples=1, temperature=1, top_k=0, top_p=0.0, is_xlnet=False, device='cpu', decoder_tokenizer=None, max_seq_length=-1):
context = torch.tensor(context, dtype=torch.long, device=device)
context = context.unsqueeze(0).repeat(num_samples, 1)
generated = context
gen_seq_length = 0
with torch.no_grad():
while True:
inputs = {'input_ids': generated}
outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
next_token_logits = outputs[0][0, -1, :] / temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
gen_seq_length += 1
if next_token.unsqueeze(0)[0,0].item() == decoder_tokenizer.encode('<EOS>')[0]:
break
if max_seq_length>0 and gen_seq_length>max_seq_length:
break
return generated
def sample_sequence_conditional(model, length, context, past=None, num_samples=1, temperature=1, top_k=0, top_p=0.0, device='cpu', decoder_tokenizer=None, max_seq_length=-1):
context = torch.tensor(context, dtype=torch.long, device=device)
context = context.unsqueeze(0).repeat(num_samples, 1)
generated = context
gen_seq_length = 0
with torch.no_grad():
while True:
inputs = {'input_ids': generated, 'past': past}
outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
next_token_logits = outputs[0][0, -1, :] / temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
gen_seq_length += 1
# pdb.set_trace()
if next_token.unsqueeze(0)[0,0].item() == decoder_tokenizer.encode('<EOS>')[0]:
break
if max_seq_length>0 and gen_seq_length>max_seq_length:
break
return generated
def evaluate_generation_from_gpt2(model, decoder_tokenizer, args, ns=1):
loc = torch.zeros([args.nz]).to(args.device)
scale = torch.ones([args.nz]).to(args.device)
prior = torch.distributions.normal.Normal(loc, scale)
context_tokens = decoder_tokenizer.encode('<BOS>')
count = 0
result = defaultdict(str)
for i in tqdm(range(args.num_sents)):
with torch.no_grad():
out = sample_sequence(
model=model,
context=context_tokens,
length=args.max_seq_length, # Chunyuan: Fix length; or use <EOS> to complete a sentence
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
device=args.device,
decoder_tokenizer = decoder_tokenizer,
max_seq_length = args.max_seq_length
)
text_x1 = decoder_tokenizer.decode(out[0,:].tolist(), clean_up_tokenization_spaces=True)
text_x1 = text_x1.split()[1:-1]
text_x1 = ' '.join(text_x1) + '\n'
result[i] = text_x1
if args.use_philly:
print("PROGRESS: {}%".format( round(100 * i /args.num_sents , 4)))
with open(args.output_generation_file, "w") as writer:
logger.info("***** SHOW generated sentences from prior *****")
for key in sorted(result.keys()):
# logger.info(" %s \n %s", key, str(result[key]))
# writer.write("%s \n %s\n" % (key, str(result[key])))
writer.write("%s" % str(result[key]))
return result
# bleu = evaluate_bleu(results, args)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--train_data_file", default=None, type=str, required=True,
help="The input training data file (a text file).")
parser.add_argument("--eval_data_file", default=None, type=str,
help="An input evaluation data file to evaluate the perplexity on (a text file).")
parser.add_argument("--checkpoint_dir", default=None, type=str, required=True,
help="The directory where checkpoints are saved.")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--dataset", default='Snli', type=str, help="The dataset.")
## Variational auto-encoder
parser.add_argument("--latent_size", default=32, type=int, help="Latent space dimension.")
parser.add_argument("--total_sents", default=10, type=int, help="Total sentences to test recontruction.")
parser.add_argument("--num_sents", default=10, type=int, help="Total sentences to generate.")
## Encoder options
parser.add_argument("--encoder_model_type", default="bert", type=str,
help="The encoder model architecture to be fine-tuned.")
parser.add_argument("--encoder_model_name_or_path", default="bert-base-cased", type=str,
help="The encoder model checkpoint for weights initialization.")
parser.add_argument("--encoder_config_name", default="", type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--encoder_tokenizer_name", default="", type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
## Decoder options
parser.add_argument("--decoder_model_type", default="gpt2", type=str,
help="The decoder model architecture to be fine-tuned.")
parser.add_argument("--decoder_model_name_or_path", default="bert-base-cased", type=str,
help="The decoder model checkpoint for weights initialization.")
parser.add_argument("--decoder_config_name", default="", type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--decoder_tokenizer_name", default="", type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
parser.add_argument("--per_gpu_train_batch_size", default=1, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=1, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gloabl_step_eval', type=int, default=661,
help="Evaluate the results at the given global step")
parser.add_argument("--max_seq_length", default=512, type=int,
help="Optional input sequence length before tokenization. The sequence will be dropped if it is longer the max_seq_length")
## Variational auto-encoder
parser.add_argument("--nz", default=32, type=int,
help="Latent space dimension.")
parser.add_argument("--prompt", type=str, default="")
parser.add_argument("--padding_text", type=str, default="")
parser.add_argument("--length", type=int, default=20)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument("--block_size", default=-1, type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--use_philly", action='store_true',
help="Use Philly for computing.")
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
set_seed(args)
args.decoder_model_type = args.decoder_model_type.lower()
global_step = args.gloabl_step_eval
output_decoder_dir = os.path.join(args.checkpoint_dir, 'checkpoint-{}'.format(global_step))
checkpoints = [ output_decoder_dir ]
logger.info("Evaluate the following checkpoints: %s", checkpoints)
# Load a trained Decoder model and vocabulary that you have fine-tuned
decoder_config_class, decoder_model_class, decoder_tokenizer_class = MODEL_CLASSES[args.decoder_model_type]
model_decoder = decoder_model_class.from_pretrained(output_decoder_dir)
tokenizer_decoder = decoder_tokenizer_class.from_pretrained(args.decoder_tokenizer_name if args.decoder_tokenizer_name else args.decoder_model_name_or_path, do_lower_case=args.do_lower_case)
model_decoder.to(args.device)
if args.block_size <= 0:
args.block_size = tokenizer_decoder.max_len_single_sentence # Our input block size will be the max possible for the model
args.block_size = min(args.block_size, tokenizer_decoder.max_len_single_sentence)
# pdb.set_trace()
# Chunyuan: Add Padding token to GPT2
special_tokens_dict = {'pad_token': '<PAD>', 'bos_token': '<BOS>', 'eos_token': '<EOS>'}
num_added_toks = tokenizer_decoder.add_special_tokens(special_tokens_dict)
print('We have added', num_added_toks, 'tokens to GPT2')
model_decoder.resize_token_embeddings(len(tokenizer_decoder)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
assert tokenizer_decoder.pad_token == '<PAD>'
# Evaluation
if not os.path.exists(args.output_dir): os.makedirs(args.output_dir)
args.output_generation_file = os.path.join(args.output_dir, f"generation_from_gpt2_t{args.temperature}_p{args.top_p}.txt")
# args.output_generation_file = args.train_data_file
result = evaluate_generation_from_gpt2(model_decoder, tokenizer_decoder, args)
bleu5 = Bleu(test_text= args.output_generation_file,
real_text=args.eval_data_file,
num_real_sentences=args.num_sents,
num_fake_sentences=args.num_sents,
gram=5).get_score()
logger.info(f'The bleu score is {bleu5}')
sbleu5 = SelfBleu(test_text= args.output_generation_file,
num_sentences=args.num_sents,
gram=5).get_score()
logger.info(f'The self-bleu score is {sbleu5}')
args.eval_results_file = os.path.join(args.output_dir, f"eval_results_t{args.temperature}_p{args.top_p}.txt")
eval_results = {'bleu5':bleu5 , 'sbleu5':sbleu5}
with open(args.eval_results_file, "w") as writer:
logger.info("***** SHOW the quantative evalution results *****")
for key in sorted(eval_results.keys()):
writer.write("%s %s" % (key, str(eval_results[key])) )
if __name__ == '__main__':
main()
|