File size: 3,253 Bytes
c5ca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training DistilBERT.
"""
import argparse
import pickle
import random
import time
import numpy as np
from pytorch_transformers import BertTokenizer, RobertaTokenizer
import logging

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

def main():
    parser = argparse.ArgumentParser(description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).")
    parser.add_argument('--file_path', type=str, default='data/dump.txt',
                        help='The path to the data.')
    parser.add_argument('--tokenizer_type', type=str, default='bert', choices=['bert', 'roberta'])
    parser.add_argument('--tokenizer_name', type=str, default='bert-base-uncased',
                        help="The tokenizer to use.")
    parser.add_argument('--dump_file', type=str, default='data/dump',
                        help='The dump file prefix.')
    args = parser.parse_args()


    logger.info(f'Loading Tokenizer ({args.tokenizer_name})')
    if args.tokenizer_type == 'bert':
        tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name)
    elif args.tokenizer_type == 'roberta':
        tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name)
    bos = tokenizer.special_tokens_map['bos_token'] # `[CLS]` for bert, `<s>` for roberta
    sep = tokenizer.special_tokens_map['sep_token'] # `[SEP]` for bert, `</s>` for roberta

    logger.info(f'Loading text from {args.file_path}')
    with open(args.file_path, 'r', encoding='utf8') as fp:
        data = fp.readlines()


    logger.info(f'Start encoding')
    logger.info(f'{len(data)} examples to process.')

    rslt = []
    iter = 0
    interval = 10000
    start = time.time()
    for text in data:
        text = f'{bos} {text.strip()} {sep}'
        token_ids = tokenizer.encode(text)
        rslt.append(token_ids)

        iter += 1
        if iter % interval == 0:
            end = time.time()
            logger.info(f'{iter} examples processed. - {(end-start)/interval:.2f}s/expl')
            start = time.time()
    logger.info('Finished binarization')
    logger.info(f'{len(data)} examples processed.')


    dp_file = f'{args.dump_file}.{args.tokenizer_name}.pickle'
    rslt_ = [np.uint16(d) for d in rslt]
    random.shuffle(rslt_)
    logger.info(f'Dump to {dp_file}')
    with open(dp_file, 'wb') as handle:
        pickle.dump(rslt_, handle, protocol=pickle.HIGHEST_PROTOCOL)


if __name__ == "__main__":
    main()