File size: 10,495 Bytes
c5ca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""

from __future__ import absolute_import, division, print_function

import argparse
import glob
import logging
import os
import random
import pdb

cwd = os.getcwd()
print(f"Current working dir is {cwd}")

import sys
sys.path.append('./')
pt_path = os.path.join( cwd, 'pytorch_transformers')
sys.path.append(pt_path)
print(f"Pytorch Transformer {pt_path}")


import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange

from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
                                  BertForSequenceClassification, BertTokenizer,BertForSequenceClassificationLatentConnector,
                                  RobertaConfig,
                                  RobertaForSequenceClassification,
                                  RobertaTokenizer,
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
                                  XLNetTokenizer)

from pytorch_transformers import AdamW, WarmupLinearSchedule

from utils_glue import (compute_metrics, convert_examples_to_features,
                        output_modes, processors)

logger = logging.getLogger(__name__)

ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig)), ())

MODEL_CLASSES = {
    'bert': (BertConfig, BertForSequenceClassificationLatentConnector, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
}


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

def load_and_cache_examples(args, task, tokenizer, file_txt, evaluate=False):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    processor = processors[task]()
    output_mode = output_modes[task]

    label_list = processor.get_labels()
    if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
        # HACK(label indices are swapped in RoBERTa pretrained model)
        label_list[1], label_list[2] = label_list[2], label_list[1] 
    examples = processor.get_train_examples(args.data_dir, args.percentage_per_label, args.sample_per_label)
    
    # Chunyuan: convert examples into text lines here

    # write data in a file. 
    for item in examples:
        # pdb.set_trace()
        if item.text_b:
            line = item.text_a + " " + tokenizer.sep_token + " " + item.text_b + "\n"
        else:
            line = item.text_a + " \n"
        file_txt.write(line) 

    file_txt.close()


def main():
    parser = argparse.ArgumentParser()

    ## Required parameters 
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    parser.add_argument('--gloabl_step_eval', type=int, default=661,
                        help="Evaluate the results at the given global step")
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))

    ## Other parameters
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")

    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--percentage_per_label", type=float, default=1.0,
                        help="Set this value (<1.0), if you are using a subset of training dataset.")
    parser.add_argument("--sample_per_label", type=int, default=-1,
                        help="Set this value, if you are using a subset of training dataset, and a fixed number of samples are specified.")                        
    parser.add_argument("--use_freeze", action='store_true',
                        help="Set this flag if you are not updating the model.")


    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")
    parser.add_argument("--use_philly", action='store_true',
                        help="Use Philly for computing.")

    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")

    args = parser.parse_args()

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    # Set seed
    set_seed(args)


    ## Tokenizer 
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, do_lower_case=args.do_lower_case)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    if not os.path.isdir(args.output_dir):
        os.mkdir(args.output_dir)

    logger.info("Parameters %s", args)

    # Prepare GLUE task
    TASK_NAME = ['CoLA', 'SST-2', 'MRPC', 'STS-B', 'QQP', 'MNLI', 'QNLI', 'RTE', 'WNLI']
    parent_path = args.data_dir

    for task_ in TASK_NAME:

        args.data_dir = os.path.join(parent_path, task_) 
        args.task_name = task_.lower()

        if args.task_name not in processors:
            raise ValueError("Task not found: %s" % (args.task_name))
        processor = processors[args.task_name]()
        args.output_mode = output_modes[args.task_name]

        args.output_file_name = os.path.join(args.output_dir, f"{args.task_name}.txt")
        logger.info("Dataset input file at %s", args.data_dir)
        logger.info("Dataset ouput file at %s", args.output_file_name)

        file_txt = open(args.output_file_name, "w") 

        load_and_cache_examples(args, args.task_name, tokenizer, file_txt, evaluate=False)

        



if __name__ == "__main__":
    main()