Spaces:
Runtime error
Runtime error
File size: 53,731 Bytes
c5ca37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model.
Adapted from https://github.com/kimiyoung/transformer-xl.
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import json
import math
import logging
import collections
import sys
from io import open
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter
from .modeling_utils import PreTrainedModel, Conv1D, prune_conv1d_layer, SequenceSummary
from .configuration_transfo_xl import TransfoXLConfig
from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax, sample_logits
from .file_utils import add_start_docstrings
logger = logging.getLogger(__name__)
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP = {
'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-pytorch_model.bin",
}
def build_tf_to_pytorch_map(model, config):
""" A map of modules from TF to PyTorch.
This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible.
"""
tf_to_pt_map = {}
if hasattr(model, 'transformer'):
# We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax
tf_to_pt_map.update({
"transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight,
"transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias})
for i, (out_l, proj_l, tie_proj) in enumerate(zip(
model.crit.out_layers,
model.crit.out_projs,
config.tie_projs)):
layer_str = "transformer/adaptive_softmax/cutoff_%d/" % i
if config.tie_weight:
tf_to_pt_map.update({
layer_str + 'b': out_l.bias})
else:
raise NotImplementedError
# I don't think this is implemented in the TF code
tf_to_pt_map.update({
layer_str + 'lookup_table': out_l.weight,
layer_str + 'b': out_l.bias})
if not tie_proj:
tf_to_pt_map.update({
layer_str + 'proj': proj_l
})
# Now load the rest of the transformer
model = model.transformer
# Embeddings
for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)):
layer_str = "transformer/adaptive_embed/cutoff_%d/" % i
tf_to_pt_map.update({
layer_str + 'lookup_table': embed_l.weight,
layer_str + 'proj_W': proj_l
})
# Transformer blocks
for i, b in enumerate(model.layers):
layer_str = "transformer/layer_%d/" % i
tf_to_pt_map.update({
layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight,
layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias,
layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight,
layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight,
layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight,
layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight,
layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias,
layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight,
layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias,
layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight,
layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias,
})
# Relative positioning biases
if config.untie_r:
r_r_list = []
r_w_list = []
for b in model.layers:
r_r_list.append(b.dec_attn.r_r_bias)
r_w_list.append(b.dec_attn.r_w_bias)
else:
r_r_list = [model.r_r_bias]
r_w_list = [model.r_w_bias]
tf_to_pt_map.update({
'transformer/r_r_bias': r_r_list,
'transformer/r_w_bias': r_w_list})
return tf_to_pt_map
def load_tf_weights_in_transfo_xl(model, config, tf_path):
""" Load tf checkpoints in a pytorch model
"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
# Build TF to PyTorch weights loading map
tf_to_pt_map = build_tf_to_pytorch_map(model, config)
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
tf_weights = {}
for name, shape in init_vars:
logger.info("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
tf_weights[name] = array
for name, pointer in tf_to_pt_map.items():
assert name in tf_weights
array = tf_weights[name]
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if 'kernel' in name or 'proj' in name:
array = np.transpose(array)
if ('r_r_bias' in name or 'r_w_bias' in name) and len(pointer) > 1:
# Here we will split the TF weigths
assert len(pointer) == array.shape[0]
for i, p_i in enumerate(pointer):
arr_i = array[i, ...]
try:
assert p_i.shape == arr_i.shape
except AssertionError as e:
e.args += (p_i.shape, arr_i.shape)
raise
logger.info("Initialize PyTorch weight {} for layer {}".format(name, i))
p_i.data = torch.from_numpy(arr_i)
else:
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
tf_weights.pop(name, None)
tf_weights.pop(name + '/Adam', None)
tf_weights.pop(name + '/Adam_1', None)
logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
return model
class PositionalEmbedding(nn.Module):
def __init__(self, demb):
super(PositionalEmbedding, self).__init__()
self.demb = demb
inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
self.register_buffer('inv_freq', inv_freq)
def forward(self, pos_seq, bsz=None):
sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
if bsz is not None:
return pos_emb[:,None,:].expand(-1, bsz, -1)
else:
return pos_emb[:,None,:]
class PositionwiseFF(nn.Module):
def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
super(PositionwiseFF, self).__init__()
self.d_model = d_model
self.d_inner = d_inner
self.dropout = dropout
self.CoreNet = nn.Sequential(
nn.Linear(d_model, d_inner), nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Linear(d_inner, d_model),
nn.Dropout(dropout),
)
self.layer_norm = nn.LayerNorm(d_model)
self.pre_lnorm = pre_lnorm
def forward(self, inp):
if self.pre_lnorm:
##### layer normalization + positionwise feed-forward
core_out = self.CoreNet(self.layer_norm(inp))
##### residual connection
output = core_out + inp
else:
##### positionwise feed-forward
core_out = self.CoreNet(inp)
##### residual connection + layer normalization
output = self.layer_norm(inp + core_out)
return output
class MultiHeadAttn(nn.Module):
def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
pre_lnorm=False, r_r_bias=None, r_w_bias=None, output_attentions=False):
super(MultiHeadAttn, self).__init__()
self.output_attentions = output_attentions
self.n_head = n_head
self.d_model = d_model
self.d_head = d_head
self.dropout = dropout
self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)
self.drop = nn.Dropout(dropout)
self.dropatt = nn.Dropout(dropatt)
self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)
self.layer_norm = nn.LayerNorm(d_model)
self.scale = 1 / (d_head ** 0.5)
self.pre_lnorm = pre_lnorm
if r_r_bias is None or r_w_bias is None: # Biases are not shared
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
else:
self.r_r_bias = r_r_bias
self.r_w_bias = r_w_bias
def forward(self, h, attn_mask=None, mems=None, head_mask=None):
##### multihead attention
# [hlen x bsz x n_head x d_head]
if mems is not None:
c = torch.cat([mems, h], 0)
else:
c = h
if self.pre_lnorm:
##### layer normalization
c = self.layer_norm(c)
head_q = self.q_net(h)
head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)
head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)
# [qlen x klen x bsz x n_head]
attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
attn_score.mul_(self.scale)
if attn_mask is not None and torch.sum(attn_mask).item():
attn_mask = (attn_mask == 1) # Switch to bool
if attn_mask.dim() == 2:
attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
elif attn_mask.dim() == 3:
attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))
# [qlen x klen x bsz x n_head]
attn_prob = F.softmax(attn_score, dim=1)
attn_prob = self.dropatt(attn_prob)
# Mask heads if we want to
if head_mask is not None:
attn_prob = attn_prob * head_mask
# [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
attn_vec = attn_vec.contiguous().view(
attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
##### linear projection
attn_out = self.o_net(attn_vec)
attn_out = self.drop(attn_out)
if self.pre_lnorm:
##### residual connection
outputs = [h + attn_out]
else:
##### residual connection + layer normalization
outputs = [self.layer_norm(h + attn_out)]
if self.output_attentions:
outputs.append(attn_prob)
return outputs
class RelMultiHeadAttn(nn.Module):
def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False,
r_r_bias=None, r_w_bias=None, output_attentions=False):
super(RelMultiHeadAttn, self).__init__()
self.output_attentions = output_attentions
self.n_head = n_head
self.d_model = d_model
self.d_head = d_head
self.dropout = dropout
self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)
self.drop = nn.Dropout(dropout)
self.dropatt = nn.Dropout(dropatt)
self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)
self.layer_norm = nn.LayerNorm(d_model)
self.scale = 1 / (d_head ** 0.5)
self.pre_lnorm = pre_lnorm
if r_r_bias is None or r_w_bias is None: # Biases are not shared
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
else:
self.r_r_bias = r_r_bias
self.r_w_bias = r_w_bias
def _parallelogram_mask(self, h, w, left=False):
mask = torch.ones((h, w)).byte()
m = min(h, w)
mask[:m,:m] = torch.triu(mask[:m,:m])
mask[-m:,-m:] = torch.tril(mask[-m:,-m:])
if left:
return mask
else:
return mask.flip(0)
def _shift(self, x, qlen, klen, mask, left=False):
if qlen > 1:
zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
device=x.device, dtype=x.dtype)
else:
zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)
if left:
mask = mask.flip(1)
x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
else:
x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)
x = x_padded.masked_select(mask[:,:,None,None]) \
.view(qlen, klen, x.size(2), x.size(3))
return x
def _rel_shift(self, x, zero_triu=False):
zero_pad_shape = (x.size(0), 1) + x.size()[2:]
zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=1)
x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:]
x_padded = x_padded.view(*x_padded_shape)
x = x_padded[1:].view_as(x)
if zero_triu:
ones = torch.ones((x.size(0), x.size(1)))
x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]
return x
def forward(self, w, r, attn_mask=None, mems=None):
raise NotImplementedError
class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
def __init__(self, *args, **kwargs):
super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)
self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)
def forward(self, w, r, attn_mask=None, mems=None, head_mask=None):
qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)
if mems is not None:
cat = torch.cat([mems, w], 0)
if self.pre_lnorm:
w_heads = self.qkv_net(self.layer_norm(cat))
else:
w_heads = self.qkv_net(cat)
r_head_k = self.r_net(r)
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
w_head_q = w_head_q[-qlen:]
else:
if self.pre_lnorm:
w_heads = self.qkv_net(self.layer_norm(w))
else:
w_heads = self.qkv_net(w)
r_head_k = self.r_net(r)
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
klen = w_head_k.size(0)
w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
r_head_k = r_head_k.view(rlen, self.n_head, self.d_head) # qlen x n_head x d_head
#### compute attention score
rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head
AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head
rr_head_q = w_head_q + self.r_r_bias
BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k)) # qlen x klen x bsz x n_head
BD = self._rel_shift(BD)
# [qlen x klen x bsz x n_head]
attn_score = AC + BD
attn_score.mul_(self.scale)
#### compute attention probability
if attn_mask is not None and torch.sum(attn_mask).item():
attn_mask = (attn_mask == 1) # Switch to bool
if attn_mask.dim() == 2:
if next(self.parameters()).dtype == torch.float16:
attn_score = attn_score.float().masked_fill(
attn_mask[None,:,:,None], -65000).type_as(attn_score)
else:
attn_score = attn_score.float().masked_fill(
attn_mask[None,:,:,None], -1e30).type_as(attn_score)
elif attn_mask.dim() == 3:
if next(self.parameters()).dtype == torch.float16:
attn_score = attn_score.float().masked_fill(
attn_mask[:,:,:,None], -65000).type_as(attn_score)
else:
attn_score = attn_score.float().masked_fill(
attn_mask[:,:,:,None], -1e30).type_as(attn_score)
# [qlen x klen x bsz x n_head]
attn_prob = F.softmax(attn_score, dim=1)
attn_prob = self.dropatt(attn_prob)
# Mask heads if we want to
if head_mask is not None:
attn_prob = attn_prob * head_mask
#### compute attention vector
attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))
# [qlen x bsz x n_head x d_head]
attn_vec = attn_vec.contiguous().view(
attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
##### linear projection
attn_out = self.o_net(attn_vec)
attn_out = self.drop(attn_out)
if self.pre_lnorm:
##### residual connection
outputs = [w + attn_out]
else:
##### residual connection + layer normalization
outputs = [self.layer_norm(w + attn_out)]
if self.output_attentions:
outputs.append(attn_prob)
return outputs
class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
def __init__(self, *args, **kwargs):
super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)
def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None, head_mask=None):
# r_emb: [klen, n_head, d_head], used for term B
# r_w_bias: [n_head, d_head], used for term C
# r_bias: [klen, n_head], used for term D
qlen, bsz = w.size(0), w.size(1)
if mems is not None:
cat = torch.cat([mems, w], 0)
if self.pre_lnorm:
w_heads = self.qkv_net(self.layer_norm(cat))
else:
w_heads = self.qkv_net(cat)
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
w_head_q = w_head_q[-qlen:]
else:
if self.pre_lnorm:
w_heads = self.qkv_net(self.layer_norm(w))
else:
w_heads = self.qkv_net(w)
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
klen = w_head_k.size(0)
w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)
if klen > r_emb.size(0):
r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
r_emb = torch.cat([r_emb_pad, r_emb], 0)
r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
r_bias = torch.cat([r_bias_pad, r_bias], 0)
else:
r_emb = r_emb[-klen:]
r_bias = r_bias[-klen:]
#### compute attention score
rw_head_q = w_head_q + r_w_bias[None] # qlen x bsz x n_head x d_head
AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head
B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb)) # qlen x klen x bsz x n_head
D_ = r_bias[None, :, None] # 1 x klen x 1 x n_head
BD = self._rel_shift(B_ + D_)
# [qlen x klen x bsz x n_head]
attn_score = AC + BD
attn_score.mul_(self.scale)
#### compute attention probability
if attn_mask is not None and torch.sum(attn_mask).item():
attn_mask = (attn_mask == 1) # Switch to bool
if attn_mask.dim() == 2:
attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
elif attn_mask.dim() == 3:
attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))
# [qlen x klen x bsz x n_head]
attn_prob = F.softmax(attn_score, dim=1)
attn_prob = self.dropatt(attn_prob)
if head_mask is not None:
attn_prob = attn_prob * head_mask
#### compute attention vector
attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))
# [qlen x bsz x n_head x d_head]
attn_vec = attn_vec.contiguous().view(
attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
##### linear projection
attn_out = self.o_net(attn_vec)
attn_out = self.drop(attn_out)
if self.pre_lnorm:
##### residual connection
outputs = [w + attn_out]
else:
##### residual connection + layer normalization
outputs = [self.layer_norm(w + attn_out)]
if self.output_attentions:
outputs.append(attn_prob)
return outputs
class DecoderLayer(nn.Module):
def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
super(DecoderLayer, self).__init__()
self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
self.pos_ff = PositionwiseFF(d_model, d_inner, dropout,
pre_lnorm=kwargs.get('pre_lnorm'))
def forward(self, dec_inp, dec_attn_mask=None, mems=None, head_mask=None):
attn_outputs = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
mems=mems, head_mask=head_mask)
ff_output = self.pos_ff(attn_outputs[0])
outputs = [ff_output] + attn_outputs[1:]
return outputs
class RelLearnableDecoderLayer(nn.Module):
def __init__(self, n_head, d_model, d_head, d_inner, dropout,
**kwargs):
super(RelLearnableDecoderLayer, self).__init__()
self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
**kwargs)
self.pos_ff = PositionwiseFF(d_model, d_inner, dropout,
pre_lnorm=kwargs.get('pre_lnorm'))
def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None, head_mask=None):
attn_outputs = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
attn_mask=dec_attn_mask,
mems=mems, head_mask=head_mask)
ff_output = self.pos_ff(attn_outputs[0])
outputs = [ff_output] + attn_outputs[1:]
return outputs
class RelPartialLearnableDecoderLayer(nn.Module):
def __init__(self, n_head, d_model, d_head, d_inner, dropout,
**kwargs):
super(RelPartialLearnableDecoderLayer, self).__init__()
self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
d_head, dropout, **kwargs)
self.pos_ff = PositionwiseFF(d_model, d_inner, dropout,
pre_lnorm=kwargs.get('pre_lnorm'))
def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None):
attn_outputs = self.dec_attn(dec_inp, r,
attn_mask=dec_attn_mask,
mems=mems, head_mask=head_mask)
ff_output = self.pos_ff(attn_outputs[0])
outputs = [ff_output] + attn_outputs[1:]
return outputs
class AdaptiveEmbedding(nn.Module):
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1,
sample_softmax=False):
super(AdaptiveEmbedding, self).__init__()
self.n_token = n_token
self.d_embed = d_embed
self.cutoffs = cutoffs + [n_token]
self.div_val = div_val
self.d_proj = d_proj
self.emb_scale = d_proj ** 0.5
self.cutoff_ends = [0] + self.cutoffs
self.emb_layers = nn.ModuleList()
self.emb_projs = nn.ParameterList()
if div_val == 1:
self.emb_layers.append(
nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
)
if d_proj != d_embed:
self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed)))
else:
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
d_emb_i = d_embed // (div_val ** i)
self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i)))
def forward(self, inp):
if self.div_val == 1:
embed = self.emb_layers[0](inp)
if self.d_proj != self.d_embed:
embed = F.linear(embed, self.emb_projs[0])
else:
param = next(self.parameters())
inp_flat = inp.view(-1)
emb_flat = torch.zeros([inp_flat.size(0), self.d_proj],
dtype=param.dtype, device=param.device)
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
indices_i = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
inp_i = inp_flat.index_select(0, indices_i) - l_idx
emb_i = self.emb_layers[i](inp_i)
emb_i = F.linear(emb_i, self.emb_projs[i])
emb_flat.index_copy_(0, indices_i, emb_i)
embed_shape = inp.size() + (self.d_proj,)
embed = emb_flat.view(embed_shape)
embed.mul_(self.emb_scale)
return embed
class TransfoXLPreTrainedModel(PreTrainedModel):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = TransfoXLConfig
pretrained_model_archive_map = TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
load_tf_weights = load_tf_weights_in_transfo_xl
base_model_prefix = "transformer"
def _init_weight(self, weight):
if self.config.init == 'uniform':
nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
elif self.config.init == 'normal':
nn.init.normal_(weight, 0.0, self.config.init_std)
def _init_bias(self, bias):
nn.init.constant_(bias, 0.0)
def _init_weights(self, m):
""" Initialize the weights.
"""
classname = m.__class__.__name__
if classname.find('Linear') != -1:
if hasattr(m, 'weight') and m.weight is not None:
self._init_weight(m.weight)
if hasattr(m, 'bias') and m.bias is not None:
self._init_bias(m.bias)
elif classname.find('AdaptiveEmbedding') != -1:
if hasattr(m, 'emb_projs'):
for i in range(len(m.emb_projs)):
if m.emb_projs[i] is not None:
nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
elif classname.find('Embedding') != -1:
if hasattr(m, 'weight'):
self._init_weight(m.weight)
elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
self._init_weight(m.cluster_weight)
if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
self._init_bias(m.cluster_bias)
if hasattr(m, 'out_projs'):
for i in range(len(m.out_projs)):
if m.out_projs[i] is not None:
nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
elif classname.find('LayerNorm') != -1:
if hasattr(m, 'weight'):
nn.init.normal_(m.weight, 1.0, self.config.init_std)
if hasattr(m, 'bias') and m.bias is not None:
self._init_bias(m.bias)
else:
if hasattr(m, 'r_emb'):
self._init_weight(m.r_emb)
if hasattr(m, 'r_w_bias'):
self._init_weight(m.r_w_bias)
if hasattr(m, 'r_r_bias'):
self._init_weight(m.r_r_bias)
if hasattr(m, 'r_bias'):
self._init_bias(m.r_bias)
def set_num_special_tokens(self, num_special_tokens):
pass
TRANSFO_XL_START_DOCSTRING = r""" The Transformer-XL model was proposed in
`Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context`_
by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
It's a causal (uni-directional) transformer with relative positioning (sinusoïdal) embeddings which can reuse
previously computed hidden-states to attend to longer context (memory).
This model also uses adaptive softmax inputs and outputs (tied).
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matter related to general usage and behavior.
.. _`Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context`:
https://arxiv.org/abs/1901.02860
.. _`torch.nn.Module`:
https://pytorch.org/docs/stable/nn.html#module
Parameters:
config (:class:`~pytorch_transformers.TransfoXLConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
TRANSFO_XL_INPUTS_DOCSTRING = r"""
Inputs:
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of input sequence tokens in the vocabulary.
Transformer-XL is a model with relative position embeddings so you can either pad the inputs on
the right or on the left.
Indices can be obtained using :class:`pytorch_transformers.TransfoXLTokenizer`.
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
**mems**: (`optional`)
list of ``torch.FloatTensor`` (one for each layer):
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
(see `mems` output below). Can be used to speed up sequential decoding and attend to longer context.
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""
@add_start_docstrings("The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
TRANSFO_XL_START_DOCSTRING, TRANSFO_XL_INPUTS_DOCSTRING)
class TransfoXLModel(TransfoXLPreTrainedModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the last layer of the model.
**mems**:
list of ``torch.FloatTensor`` (one for each layer):
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
(see `mems` input above). Can be used to speed up sequential decoding and attend to longer context.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states, mems = outputs[:2]
"""
def __init__(self, config):
super(TransfoXLModel, self).__init__(config)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.n_token = config.n_token
self.d_embed = config.d_embed
self.d_model = config.d_model
self.n_head = config.n_head
self.d_head = config.d_head
self.word_emb = AdaptiveEmbedding(config.n_token, config.d_embed, config.d_model, config.cutoffs,
div_val=config.div_val)
self.drop = nn.Dropout(config.dropout)
self.n_layer = config.n_layer
self.tgt_len = config.tgt_len
self.mem_len = config.mem_len
self.ext_len = config.ext_len
self.max_klen = config.tgt_len + config.ext_len + config.mem_len
self.attn_type = config.attn_type
if not config.untie_r:
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
self.layers = nn.ModuleList()
if config.attn_type == 0: # the default attention
for i in range(config.n_layer):
self.layers.append(
RelPartialLearnableDecoderLayer(
config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
r_w_bias=None if config.untie_r else self.r_w_bias,
r_r_bias=None if config.untie_r else self.r_r_bias,
output_attentions=self.output_attentions)
)
elif config.attn_type == 1: # learnable embeddings
for i in range(config.n_layer):
self.layers.append(
RelLearnableDecoderLayer(
config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
r_w_bias=None if config.untie_r else self.r_w_bias,
r_r_bias=None if config.untie_r else self.r_r_bias,
output_attentions=self.output_attentions)
)
elif config.attn_type in [2, 3]: # absolute embeddings
for i in range(config.n_layer):
self.layers.append(
DecoderLayer(
config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
r_w_bias=None if config.untie_r else self.r_w_bias,
r_r_bias=None if config.untie_r else self.r_r_bias,
output_attentions=self.output_attentions)
)
self.same_length = config.same_length
self.clamp_len = config.clamp_len
if self.attn_type == 0: # default attention
self.pos_emb = PositionalEmbedding(self.d_model)
elif self.attn_type == 1: # learnable
self.r_emb = nn.Parameter(torch.FloatTensor(
self.n_layer, self.max_klen, self.n_head, self.d_head))
self.r_bias = nn.Parameter(torch.FloatTensor(
self.n_layer, self.max_klen, self.n_head))
elif self.attn_type == 2: # absolute standard
self.pos_emb = PositionalEmbedding(self.d_model)
elif self.attn_type == 3: # absolute deeper SA
self.r_emb = nn.Parameter(torch.FloatTensor(
self.n_layer, self.max_klen, self.n_head, self.d_head))
self.init_weights()
def _resize_token_embeddings(self, new_num_tokens):
return self.word_emb
def backward_compatible(self):
self.sample_softmax = -1
def reset_length(self, tgt_len, ext_len, mem_len):
self.tgt_len = tgt_len
self.mem_len = mem_len
self.ext_len = ext_len
def _prune_heads(self, heads):
logger.info("Head pruning is not implemented for Transformer-XL model")
pass
def init_mems(self, data):
if self.mem_len > 0:
mems = []
param = next(self.parameters())
for i in range(self.n_layer):
empty = torch.zeros(self.mem_len, data.size(1), self.config.d_model,
dtype=param.dtype, device=param.device)
mems.append(empty)
return mems
else:
return None
def _update_mems(self, hids, mems, qlen, mlen):
# does not deal with None
if mems is None: return None
# mems is not None
assert len(hids) == len(mems), 'len(hids) != len(mems)'
# There are `mlen + qlen` steps that can be cached into mems
# For the next step, the last `ext_len` of the `qlen` tokens
# will be used as the extended context. Hence, we only cache
# the tokens from `mlen + qlen - self.ext_len - self.mem_len`
# to `mlen + qlen - self.ext_len`.
with torch.no_grad():
new_mems = []
end_idx = mlen + max(0, qlen - 0 - self.ext_len)
beg_idx = max(0, end_idx - self.mem_len)
for i in range(len(hids)):
cat = torch.cat([mems[i], hids[i]], dim=0)
new_mems.append(cat[beg_idx:end_idx].detach())
return new_mems
def _forward(self, dec_inp, mems=None, head_mask=None):
qlen, bsz = dec_inp.size()
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
# and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.n_layer
word_emb = self.word_emb(dec_inp)
mlen = mems[0].size(0) if mems is not None else 0
klen = mlen + qlen
if self.same_length:
all_ones = word_emb.new_ones((qlen, klen), dtype=torch.uint8)
mask_len = klen - self.mem_len
if mask_len > 0:
mask_shift_len = qlen - mask_len
else:
mask_shift_len = qlen
dec_attn_mask = (torch.triu(all_ones, 1+mlen)
+ torch.tril(all_ones, -mask_shift_len))[:, :, None] # -1
else:
dec_attn_mask = torch.triu(
word_emb.new_ones((qlen, klen), dtype=torch.uint8), diagonal=1+mlen)[:,:,None]
hids = []
attentions = []
if self.attn_type == 0: # default
pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device,
dtype=word_emb.dtype)
if self.clamp_len > 0:
pos_seq.clamp_(max=self.clamp_len)
pos_emb = self.pos_emb(pos_seq)
core_out = self.drop(word_emb)
pos_emb = self.drop(pos_emb)
for i, layer in enumerate(self.layers):
hids.append(core_out)
mems_i = None if mems is None else mems[i]
layer_outputs = layer(core_out, pos_emb, dec_attn_mask=dec_attn_mask,
mems=mems_i, head_mask=head_mask[i])
core_out = layer_outputs[0]
if self.output_attentions:
attentions.append(layer_outputs[1])
elif self.attn_type == 1: # learnable
core_out = self.drop(word_emb)
for i, layer in enumerate(self.layers):
hids.append(core_out)
if self.clamp_len > 0:
r_emb = self.r_emb[i][-self.clamp_len :]
r_bias = self.r_bias[i][-self.clamp_len :]
else:
r_emb, r_bias = self.r_emb[i], self.r_bias[i]
mems_i = None if mems is None else mems[i]
layer_outputs = layer(core_out, r_emb, self.r_w_bias[i],
r_bias, dec_attn_mask=dec_attn_mask,
mems=mems_i, head_mask=head_mask[i])
core_out = layer_outputs[0]
if self.output_attentions:
attentions.append(layer_outputs[1])
elif self.attn_type == 2: # absolute
pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
dtype=word_emb.dtype)
if self.clamp_len > 0:
pos_seq.clamp_(max=self.clamp_len)
pos_emb = self.pos_emb(pos_seq)
core_out = self.drop(word_emb + pos_emb[-qlen:])
for i, layer in enumerate(self.layers):
hids.append(core_out)
mems_i = None if mems is None else mems[i]
if mems_i is not None and i == 0:
mems_i += pos_emb[:mlen]
layer_outputs = layer(core_out, dec_attn_mask=dec_attn_mask,
mems=mems_i, head_mask=head_mask[i])
core_out = layer_outputs[0]
if self.output_attentions:
attentions.append(layer_outputs[1])
elif self.attn_type == 3:
core_out = self.drop(word_emb)
for i, layer in enumerate(self.layers):
hids.append(core_out)
mems_i = None if mems is None else mems[i]
if mems_i is not None and mlen > 0:
cur_emb = self.r_emb[i][:-qlen]
cur_size = cur_emb.size(0)
if cur_size < mlen:
cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
else:
cur_emb = cur_emb[-mlen:]
mems_i += cur_emb.view(mlen, 1, -1)
core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)
layer_outputs = layer(core_out, dec_attn_mask=dec_attn_mask,
mems=mems_i, head_mask=head_mask[i])
core_out = layer_outputs[0]
if self.output_attentions:
attentions.append(layer_outputs[1])
core_out = self.drop(core_out)
new_mems = self._update_mems(hids, mems, mlen, qlen)
# We transpose back here to shape [bsz, len, hidden_dim]
outputs = [core_out.transpose(0, 1).contiguous(), new_mems]
if self.output_hidden_states:
# Add last layer and transpose to library standard shape [bsz, len, hidden_dim]
hids.append(core_out)
hids = list(t.transpose(0, 1).contiguous() for t in hids)
outputs.append(hids)
if self.output_attentions:
# Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
attentions = list(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
outputs.append(attentions)
return outputs # last hidden state, new_mems, (all hidden states), (all attentions)
def forward(self, input_ids, mems=None, head_mask=None):
# the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
# so we transpose here from shape [bsz, len] to shape [len, bsz]
input_ids = input_ids.transpose(0, 1).contiguous()
if mems is None:
mems = self.init_mems(input_ids)
outputs = self._forward(input_ids, mems=mems, head_mask=head_mask)
return outputs # last hidden state, new_mems, (all hidden states), (all attentions)
@add_start_docstrings("""The Transformer-XL Model with a language modeling head on top
(adaptive softmax with weights tied to the adaptive input embeddings)""",
TRANSFO_XL_START_DOCSTRING, TRANSFO_XL_INPUTS_DOCSTRING)
class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
r"""
**lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for language modeling.
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
Indices are selected in ``[-1, 0, ..., config.vocab_size]``
All labels set to ``-1`` are ignored (masked), the loss is only
computed for labels in ``[0, ..., config.vocab_size]``
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Language modeling loss.
**prediction_scores**: ``None`` if ``lm_labels`` is provided else ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
We don't output them when the loss is computed to speedup adaptive softmax decoding.
**mems**:
list of ``torch.FloatTensor`` (one for each layer):
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
(see `mems` input above). Can be used to speed up sequential decoding and attend to longer context.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
prediction_scores, mems = outputs[:2]
"""
def __init__(self, config):
super(TransfoXLLMHeadModel, self).__init__(config)
self.transformer = TransfoXLModel(config)
self.sample_softmax = config.sample_softmax
# use sampled softmax
if config.sample_softmax > 0:
self.out_layer = nn.Linear(config.d_model, config.n_token)
self.sampler = LogUniformSampler(config.n_token, config.sample_softmax)
# use adaptive softmax (including standard softmax)
else:
self.crit = ProjectedAdaptiveLogSoftmax(config.n_token, config.d_embed, config.d_model,
config.cutoffs, div_val=config.div_val)
self.init_weights()
self.tie_weights()
def tie_weights(self):
"""
Run this to be sure output and input (adaptive) softmax weights are tied
"""
# sampled softmax
if self.sample_softmax > 0:
if self.config.tie_weight:
self.out_layer.weight = self.transformer.word_emb.weight
# adaptive softmax (including standard softmax)
else:
if self.config.tie_weight:
for i in range(len(self.crit.out_layers)):
self._tie_or_clone_weights(self.crit.out_layers[i],
self.transformer.word_emb.emb_layers[i])
if self.config.tie_projs:
for i, tie_proj in enumerate(self.config.tie_projs):
if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
if self.config.torchscript:
self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone())
else:
self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
elif tie_proj and self.config.div_val != 1:
if self.config.torchscript:
self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone())
else:
self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
def reset_length(self, tgt_len, ext_len, mem_len):
self.transformer.reset_length(tgt_len, ext_len, mem_len)
def init_mems(self, data):
return self.transformer.init_mems(data)
def forward(self, input_ids, mems=None, head_mask=None, labels=None):
bsz = input_ids.size(0)
tgt_len = input_ids.size(1)
transformer_outputs = self.transformer(input_ids, mems=mems, head_mask=head_mask)
last_hidden = transformer_outputs[0]
pred_hid = last_hidden[:, -tgt_len:]
outputs = transformer_outputs[1:]
if self.sample_softmax > 0 and self.training:
assert self.config.tie_weight
logit = sample_logits(self.transformer.word_emb, self.out_layer.bias, labels, pred_hid, self.sampler)
softmax_output = -F.log_softmax(logit, -1)[:, :, 0]
outputs = [softmax_output] + outputs
if labels is not None:
# TODO: This is not implemented
raise NotImplementedError
else:
softmax_output = self.crit(pred_hid.view(-1, pred_hid.size(-1)), labels)
if labels is None:
softmax_output = softmax_output.view(bsz, tgt_len, -1)
outputs = [softmax_output] + outputs
else:
softmax_output = softmax_output.view(bsz, tgt_len)
outputs = [softmax_output, None] + outputs
return outputs # (loss), logits or None if labels is not None (speed up adaptive softmax), new_mems, (all hidden states), (all attentions)
|