Spaces:
Runtime error
Runtime error
File size: 7,452 Bytes
c5ca37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
export PYTHONPATH="${PYTHONPATH}:/workspace/code"
# export TRAIN_FILE=../data/datasets/penn/train.txt
# export TEST_FILE=../data/datasets/penn/test.txt
# export TRAIN_FILE=../data/datasets/wikitext-2/train.txt
# export TEST_FILE=../data/datasets/wikitext-2/valid.txt
# export GPU_ID=0,1
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \
# --checkpoint_dir=../output/philly_clm_wiki2_0.0 \
# --output_dir=../output/philly_clm_wiki2_0.0 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-uncased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1
# export TRAIN_FILE=../data/datasets/debug_data/train.txt
# export TEST_FILE=../data/datasets/debug_data/test.txt
# export GPU_ID=0,1
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \
# --checkpoint_dir=../output/local_lm_vae_debug_bert_gpt \
# --output_dir=../output/local_lm_vae_debug_bert_gpt \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-uncased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 400
export TRAIN_FILE=../data/datasets/debug_data/train.txt
export TEST_FILE=../data/datasets/debug_data/test.txt
export GPU_ID=1
# # interpolation from pre-trained model on wiki
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta1.0_d1.0_ro0.5_ra0.25_768_v2 \
# --output_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta1.0_d1.0_ro0.5_ra0.25_768_v2 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 508523 \
# --block_size 100 \
# --max_seq_length 100 \
# --latent_size 768 \
# --play_mode interpolation \
# --num_interpolation_steps 10
# # reconstruction from pre-trained model on wiki
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta0.0_d1.0_ro0.5_ra0.25_32_v2 \
# --output_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta0.0_d1.0_ro0.5_ra0.25_32_v2 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 400000 \
# --block_size 100 \
# --max_seq_length 100 \
# --latent_size 32 \
# --play_mode reconstrction
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 31250 \
# --block_size 100 \
# --max_seq_length 100 \
# --latent_size 768 \
# --play_mode interpolation \
# --num_interpolation_steps 10
# reconstrction
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 31250 \
# --block_size 100 \
# --max_seq_length 100 \
# --latent_size 768 \
# --play_mode reconstrction
# interact_with_user_input
CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
--dataset Debug \
--checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
--output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
--encoder_model_type=bert \
--encoder_model_name_or_path=bert-base-cased \
--decoder_model_type=gpt2 \
--decoder_model_name_or_path=gpt2 \
--train_data_file=$TRAIN_FILE \
--eval_data_file=$TEST_FILE \
--per_gpu_eval_batch_size=1 \
--gloabl_step_eval 31250 \
--block_size 100 \
--max_seq_length 100 \
--latent_size 768 \
--interact_with_user_input \
--play_mode analogy \
--sent_source="a yellow cat likes to chase a long string ." \
--sent_target="a yellow cat likes to chase a short string ." \
--sent_input="a brown dog likes to eat long pasta ." \
--degree_to_target=1.0
# interact_with_user_input
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 31250 \
# --block_size 100 \
# --max_seq_length 100 \
# --latent_size 768 \
# --interact_with_user_input \
# --play_mode interpolation \
# --sent_source="a yellow cat likes to chase a short string ." \
# --sent_target="a brown dog likes to eat his food very slowly ." \
# --num_interpolation_steps=10
# export TRAIN_FILE=../data/datasets/debug_data/train.txt
# export TEST_FILE=../data/datasets/debug_data/test.txt
# export GPU_ID=1
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/local_lm_vae_debug_bert_gpt \
# --output_dir=../output/local_lm_vae_debug_bert_gpt \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-uncased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 800 \
# --total_sents 10 |