Spaces:
Runtime error
Runtime error
File size: 5,011 Bytes
c5ca37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
export PYTHONPATH="${PYTHONPATH}:/workspace/code"
export GPU_ID=0,1
# export TRAIN_FILE=../data/datasets/wikitext-2/train.txt
# export TEST_FILE=../data/datasets/wikitext-2/valid.txt
export TRAIN_FILE=../data/datasets/yelp_style/sentiment.train.text
export TEST_FILE=../data/datasets/yelp_style/sentiment.test.text.1000sents
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_label_ctrl_gen.py \
# --output_dir ../output/local_lm_vae_label_ctrl_gen \
# --checkpoint_dir ../output/philly_cara_yelp_50.0 \
# --gloabl_step_eval 43650 \
# --dataset Yelp \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --save_steps 1000 \
# --logging_steps 1000 \
# --num_train_epochs 1.0 \
# --overwrite_output_dir 1 \
# --per_gpu_train_batch_size=32 \
# --block_size 300 \
# --do_eval
CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_label_ctrl_gen.py \
--output_dir ../output/local_lm_vae_label_ctrl_gen \
--checkpoint_dir ../output/local_lm_vae_label_ctrl_gen \
--gloabl_step_eval 6989 \
--use_pretrained_model \
--dataset Yelp \
--train_data_file=$TRAIN_FILE \
--eval_data_file=$TEST_FILE \
--encoder_model_type=bert \
--encoder_model_name_or_path=bert-base-cased \
--decoder_model_type=gpt2 \
--decoder_model_name_or_path=gpt2 \
--save_steps 1000 \
--logging_steps 1000 \
--num_train_epochs 1.0 \
--overwrite_output_dir 1 \
--per_gpu_train_batch_size=32 \
--block_size 300 \
--do_eval
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_label_ctrl_gen.py \
# --output_dir ../output/local_lm_vae_label_ctrl_gen \
# --checkpoint_dir ../output/philly_rr3scl_g8_vae_wikipedia_pretraining_beta_schedule_beta1.0_d1.0_ro0.5_ra0.25 \
# --gloabl_step_eval 760000 \
# --use_pretrained_model \
# --use_pretrained_vae \
# --dataset Yelp \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --save_steps 1000 \
# --logging_steps 1000 \
# --num_train_epochs 1.0 \
# --overwrite_output_dir 1 \
# --per_gpu_train_batch_size=32 \
# --block_size 300 \
# --do_eval \
# --do_train
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_label_ctrl_gen.py \
# --output_dir ../output/local_lm_vae_label_ctrl_gen \
# --checkpoint_dir ../output/philly_scl_b16_g8_vae_wikipedia_pretraining_b0.0_d1.0_r01.0_ra0.1_200 \
# --dataset Yelp \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --gloabl_step_eval 880000 \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --save_steps 1000 \
# --logging_steps 1000 \
# --num_train_epochs 1.0 \
# --overwrite_output_dir 1 \
# --per_gpu_train_batch_size=32 \
# --use_pretrained_model \
# --block_size 300 \
# --do_train \
# --do_eval
# export TRAIN_FILE=../data/datasets/snli_data/train.txt
# export TEST_FILE=../data/datasets/snli_data/test.txt
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_training.py \
# --output_dir=../output/local_lm_vae_snli_bert_gpt \
# --dataset Snli \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --beta 1.0 \
# --ratio_zero 0.5 \
# --ratio_increase 0.25 \
# --do_train \
# --do_eval \
# --fb_mode 1 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --num_train_epochs 1.0 \
# --save_steps 1000 \
# --logging_steps 1000 \
# --overwrite_output_dir \
# --per_gpu_train_batch_size=10 \
# --block_size 100
# export TRAIN_FILE=../data/datasets/wikipedia/wikipedia.segmented.nltk.txt
# export TEST_FILE=../data/datasets/wikipedia/test.txt
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_pretraining.py \
# --output_dir=../output/local_lm_vae_wikipedia_bert_gpt \
# --dataset wikipedia \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-uncased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --beta 1.0 \
# --ratio_zero 0.5 \
# --ratio_increase 0.25 \
# --do_train \
# --fb_mode 1 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --num_train_epochs 1.0 \
# --save_steps 1000 \
# --logging_steps 1000 \
# --overwrite_output_dir \
# --per_gpu_train_batch_size=20 \
# --block_size 100
|