File size: 5,011 Bytes
c5ca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
export PYTHONPATH="${PYTHONPATH}:/workspace/code"
export GPU_ID=0,1
# export TRAIN_FILE=../data/datasets/wikitext-2/train.txt
# export TEST_FILE=../data/datasets/wikitext-2/valid.txt



export TRAIN_FILE=../data/datasets/yelp_style/sentiment.train.text
export TEST_FILE=../data/datasets/yelp_style/sentiment.test.text.1000sents



# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_label_ctrl_gen.py \
#     --output_dir ../output/local_lm_vae_label_ctrl_gen \
#     --checkpoint_dir ../output/philly_cara_yelp_50.0 \
#     --gloabl_step_eval 43650  \
#     --dataset Yelp \
#     --train_data_file=$TRAIN_FILE \
#     --eval_data_file=$TEST_FILE \
#     --encoder_model_type=bert \
#     --encoder_model_name_or_path=bert-base-cased \
#     --decoder_model_type=gpt2 \
#     --decoder_model_name_or_path=gpt2 \
#     --save_steps 1000 \
#     --logging_steps 1000 \
#     --num_train_epochs 1.0 \
#     --overwrite_output_dir 1 \
#     --per_gpu_train_batch_size=32 \
#     --block_size 300 \
#     --do_eval




CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_label_ctrl_gen.py \
    --output_dir ../output/local_lm_vae_label_ctrl_gen \
    --checkpoint_dir ../output/local_lm_vae_label_ctrl_gen \
    --gloabl_step_eval 6989  \
    --use_pretrained_model \
    --dataset Yelp \
    --train_data_file=$TRAIN_FILE \
    --eval_data_file=$TEST_FILE \
    --encoder_model_type=bert \
    --encoder_model_name_or_path=bert-base-cased \
    --decoder_model_type=gpt2 \
    --decoder_model_name_or_path=gpt2 \
    --save_steps 1000 \
    --logging_steps 1000 \
    --num_train_epochs 1.0 \
    --overwrite_output_dir 1 \
    --per_gpu_train_batch_size=32 \
    --block_size 300 \
    --do_eval



# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_label_ctrl_gen.py \
#     --output_dir ../output/local_lm_vae_label_ctrl_gen \
#     --checkpoint_dir ../output/philly_rr3scl_g8_vae_wikipedia_pretraining_beta_schedule_beta1.0_d1.0_ro0.5_ra0.25 \
#     --gloabl_step_eval 760000  \
#     --use_pretrained_model \
#     --use_pretrained_vae \
#     --dataset Yelp \
#     --train_data_file=$TRAIN_FILE \
#     --eval_data_file=$TEST_FILE \
#     --encoder_model_type=bert \
#     --encoder_model_name_or_path=bert-base-cased \
#     --decoder_model_type=gpt2 \
#     --decoder_model_name_or_path=gpt2 \
#     --save_steps 1000 \
#     --logging_steps 1000 \
#     --num_train_epochs 1.0 \
#     --overwrite_output_dir 1 \
#     --per_gpu_train_batch_size=32 \
#     --block_size 300 \
#     --do_eval \
#     --do_train 


# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_label_ctrl_gen.py \
#     --output_dir ../output/local_lm_vae_label_ctrl_gen \
#     --checkpoint_dir ../output/philly_scl_b16_g8_vae_wikipedia_pretraining_b0.0_d1.0_r01.0_ra0.1_200 \
#     --dataset Yelp \
#     --train_data_file=$TRAIN_FILE \
#     --eval_data_file=$TEST_FILE \
#     --encoder_model_type=bert \
#     --encoder_model_name_or_path=bert-base-cased \
#     --gloabl_step_eval 880000 \
#     --decoder_model_type=gpt2 \
#     --decoder_model_name_or_path=gpt2 \
#     --save_steps 1000 \
#     --logging_steps 1000 \
#     --num_train_epochs 1.0 \
#     --overwrite_output_dir 1 \
#     --per_gpu_train_batch_size=32 \
#     --use_pretrained_model  \
#     --block_size 300 \
#     --do_train \
#     --do_eval 



# export TRAIN_FILE=../data/datasets/snli_data/train.txt
# export TEST_FILE=../data/datasets/snli_data/test.txt

# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_training.py \
#     --output_dir=../output/local_lm_vae_snli_bert_gpt \
#     --dataset Snli \
#     --encoder_model_type=bert \
#     --encoder_model_name_or_path=bert-base-cased \
#     --decoder_model_type=gpt2 \
#     --decoder_model_name_or_path=gpt2 \
#     --beta 1.0 \
#     --ratio_zero 0.5 \
#     --ratio_increase 0.25 \
#     --do_train \
#     --do_eval \
#     --fb_mode 1 \
#     --train_data_file=$TRAIN_FILE \
#     --eval_data_file=$TEST_FILE \
#     --num_train_epochs 1.0 \
#     --save_steps 1000 \
#     --logging_steps 1000 \
#     --overwrite_output_dir \
#     --per_gpu_train_batch_size=10 \
#     --block_size 100


# export TRAIN_FILE=../data/datasets/wikipedia/wikipedia.segmented.nltk.txt
# export TEST_FILE=../data/datasets/wikipedia/test.txt

# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_pretraining.py \
#     --output_dir=../output/local_lm_vae_wikipedia_bert_gpt \
#     --dataset wikipedia \
#     --encoder_model_type=bert \
#     --encoder_model_name_or_path=bert-base-uncased \
#     --decoder_model_type=gpt2 \
#     --decoder_model_name_or_path=gpt2 \
#     --beta 1.0 \
#     --ratio_zero 0.5 \
#     --ratio_increase 0.25 \
#     --do_train \
#     --fb_mode 1 \
#     --train_data_file=$TRAIN_FILE \
#     --eval_data_file=$TEST_FILE \
#     --num_train_epochs 1.0 \
#     --save_steps 1000 \
#     --logging_steps 1000 \
#     --overwrite_output_dir \
#     --per_gpu_train_batch_size=20 \
#     --block_size 100