Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" BERT classification fine-tuning: utilities to work with GLUE tasks """ | |
from __future__ import absolute_import, division, print_function | |
import csv | |
import logging | |
import os | |
import sys | |
from io import open | |
from collections import defaultdict | |
import numpy as np | |
import pdb | |
from scipy.stats import pearsonr, spearmanr | |
from sklearn.metrics import matthews_corrcoef, f1_score | |
logger = logging.getLogger(__name__) | |
class InputExample(object): | |
"""A single training/test example for simple sequence classification.""" | |
def __init__(self, guid, text_a, text_b=None, label=None): | |
"""Constructs a InputExample. | |
Args: | |
guid: Unique id for the example. | |
text_a: string. The untokenized text of the first sequence. For single | |
sequence tasks, only this sequence must be specified. | |
text_b: (Optional) string. The untokenized text of the second sequence. | |
Only must be specified for sequence pair tasks. | |
label: (Optional) string. The label of the example. This should be | |
specified for train and dev examples, but not for test examples. | |
""" | |
self.guid = guid | |
self.text_a = text_a | |
self.text_b = text_b | |
self.label = label | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, input_ids, input_mask, segment_ids, label_id): | |
self.input_ids = input_ids | |
self.input_mask = input_mask | |
self.segment_ids = segment_ids | |
self.label_id = label_id | |
class DataProcessor(object): | |
"""Base class for data converters for sequence classification data sets.""" | |
def get_train_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the train set.""" | |
raise NotImplementedError() | |
def get_dev_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the dev set.""" | |
raise NotImplementedError() | |
def get_labels(self): | |
"""Gets the list of labels for this data set.""" | |
raise NotImplementedError() | |
def _read_tsv(cls, input_file, quotechar=None): | |
"""Reads a tab separated value file.""" | |
with open(input_file, "r", encoding="utf-8-sig") as f: | |
reader = csv.reader(f, delimiter="\t", quotechar=quotechar) | |
lines = [] | |
for line in reader: | |
if sys.version_info[0] == 2: | |
line = list(unicode(cell, 'utf-8') for cell in line) | |
lines.append(line) | |
return lines | |
class MrpcProcessor(DataProcessor): | |
"""Processor for the MRPC data set (GLUE version).""" | |
def get_train_examples(self, data_dir, percentage_per_label=1.0, sample_per_label=0): | |
"""See base class.""" | |
logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv"))) | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for (i, line) in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, i) | |
text_a = line[3] | |
text_b = line[4] | |
label = line[0] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
class MnliProcessor(DataProcessor): | |
"""Processor for the MultiNLI data set (GLUE version).""" | |
def get_train_examples(self, data_dir, percentage_per_label=1.0, sample_per_label=0): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), | |
"dev_matched") | |
def get_labels(self): | |
"""See base class.""" | |
return ["contradiction", "entailment", "neutral"] | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for (i, line) in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, line[0]) | |
text_a = line[8] | |
text_b = line[9] | |
label = line[-1] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
class MnliMismatchedProcessor(MnliProcessor): | |
"""Processor for the MultiNLI Mismatched data set (GLUE version).""" | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), | |
"dev_matched") | |
class ColaProcessor(DataProcessor): | |
"""Processor for the CoLA data set (GLUE version).""" | |
def get_train_examples(self, data_dir, percentage_per_label=1.0, sample_per_label=0): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train", percentage_per_label) | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def _create_examples(self, lines, set_type, percentage_per_label=1.0, sample_per_label=0): | |
"""Creates examples for the training and dev sets.""" | |
dict_label2examples = defaultdict(list) | |
examples = [] | |
for (i, line) in enumerate(lines): | |
guid = "%s-%s" % (set_type, i) | |
text_a = line[3] | |
label = line[1] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) | |
dict_label2examples[label].append(i) | |
if percentage_per_label<1.0: | |
nlabel = GLUE_TASKS_NUM_LABELS['cola'] | |
examples_sub = [] | |
for i in range(nlabel): | |
index = np.random.choice(dict_label2examples[str(i)], int(len(dict_label2examples[str(i)])*percentage_per_label), replace=False) | |
for j in index: | |
examples_sub.append(examples[j]) | |
examples = examples_sub | |
# pdb.set_trace() | |
return examples | |
class YelpProcessor(DataProcessor): | |
"""Processor for the Yelp short data set (GLUE version).""" | |
def get_train_examples(self, data_dir, percentage_per_label=1.0, sample_per_label=0): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train", percentage_per_label, sample_per_label) | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test", percentage_per_label=1.0, sample_per_label=5000) | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def _create_examples(self, lines, set_type, percentage_per_label=1.0, sample_per_label=0): | |
"""Creates examples for the training and dev sets.""" | |
dict_label2examples = defaultdict(list) | |
examples = [] | |
for (i, line) in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, i) | |
text_a = line[1] | |
label = line[0] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) | |
dict_label2examples[label].append(i-1) | |
if percentage_per_label<1.0 or sample_per_label>0: | |
nlabel = GLUE_TASKS_NUM_LABELS['yelp'] | |
examples_sub = [] | |
for i in range(nlabel): | |
if sample_per_label > 0: | |
index = np.random.choice(dict_label2examples[str(i)], sample_per_label, replace=False) | |
else: | |
index = np.random.choice(dict_label2examples[str(i)], int(len(dict_label2examples[str(i)])*percentage_per_label), replace=False) | |
for j in index: | |
examples_sub.append(examples[j]) | |
examples = examples_sub | |
# pdb.set_trace() | |
return examples | |
class Sst2Processor(DataProcessor): | |
"""Processor for the SST-2 data set (GLUE version).""" | |
def get_train_examples(self, data_dir, percentage_per_label=1.0, sample_per_label=0): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train", percentage_per_label) | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def _create_examples(self, lines, set_type, percentage_per_label=1.0): | |
"""Creates examples for the training and dev sets.""" | |
dict_label2examples = defaultdict(list) | |
examples = [] | |
for (i, line) in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, i) | |
text_a = line[0] | |
label = line[1] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) | |
dict_label2examples[label].append(i-1) | |
if percentage_per_label<1.0: | |
nlabel = GLUE_TASKS_NUM_LABELS['sst-2'] | |
examples_sub = [] | |
for i in range(nlabel): | |
index = np.random.choice(dict_label2examples[str(i)], int(len(dict_label2examples[str(i)])*percentage_per_label), replace=False) | |
for j in index: | |
examples_sub.append(examples[j]) | |
examples = examples_sub | |
return examples | |
class StsbProcessor(DataProcessor): | |
"""Processor for the STS-B data set (GLUE version).""" | |
def get_train_examples(self, data_dir, percentage_per_label=1.0, sample_per_label=0): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
def get_labels(self): | |
"""See base class.""" | |
return [None] | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for (i, line) in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, line[0]) | |
text_a = line[7] | |
text_b = line[8] | |
label = line[-1] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
class QqpProcessor(DataProcessor): | |
"""Processor for the QQP data set (GLUE version).""" | |
def get_train_examples(self, data_dir, percentage_per_label=1.0, sample_per_label=0): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for (i, line) in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, line[0]) | |
try: | |
text_a = line[3] | |
text_b = line[4] | |
label = line[5] | |
except IndexError: | |
continue | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
class QnliProcessor(DataProcessor): | |
"""Processor for the QNLI data set (GLUE version).""" | |
def get_train_examples(self, data_dir, percentage_per_label=1.0, sample_per_label=0): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "dev.tsv")), | |
"dev_matched") | |
def get_labels(self): | |
"""See base class.""" | |
return ["entailment", "not_entailment"] | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for (i, line) in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, line[0]) | |
text_a = line[1] | |
text_b = line[2] | |
label = line[-1] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
class RteProcessor(DataProcessor): | |
"""Processor for the RTE data set (GLUE version).""" | |
def get_train_examples(self, data_dir, percentage_per_label=1.0, sample_per_label=0): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
def get_labels(self): | |
"""See base class.""" | |
return ["entailment", "not_entailment"] | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for (i, line) in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, line[0]) | |
text_a = line[1] | |
text_b = line[2] | |
label = line[-1] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
class WnliProcessor(DataProcessor): | |
"""Processor for the WNLI data set (GLUE version).""" | |
def get_train_examples(self, data_dir, percentage_per_label=1.0, sample_per_label=0): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1"] | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for (i, line) in enumerate(lines): | |
if i == 0: | |
continue | |
guid = "%s-%s" % (set_type, line[0]) | |
text_a = line[1] | |
text_b = line[2] | |
label = line[-1] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def convert_examples_to_features(examples, label_list, max_seq_length, | |
tokenizer, output_mode, | |
cls_token_at_end=False, | |
cls_token='[CLS]', | |
cls_token_segment_id=1, | |
sep_token='[SEP]', | |
sep_token_extra=False, | |
pad_on_left=False, | |
pad_token=0, | |
pad_token_segment_id=0, | |
sequence_a_segment_id=0, | |
sequence_b_segment_id=1, | |
mask_padding_with_zero=True): | |
""" Loads a data file into a list of `InputBatch`s | |
`cls_token_at_end` define the location of the CLS token: | |
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] | |
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] | |
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) | |
""" | |
label_map = {label : i for i, label in enumerate(label_list)} | |
features = [] | |
for (ex_index, example) in enumerate(examples): | |
if ex_index % 10000 == 0: | |
logger.info("Writing example %d of %d" % (ex_index, len(examples))) | |
tokens_a = tokenizer.tokenize(example.text_a) | |
tokens_b = None | |
if example.text_b: | |
tokens_b = tokenizer.tokenize(example.text_b) | |
# Modifies `tokens_a` and `tokens_b` in place so that the total | |
# length is less than the specified length. | |
# Account for [CLS], [SEP], [SEP] with "- 3". " -4" for RoBERTa. | |
special_tokens_count = 4 if sep_token_extra else 3 | |
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - special_tokens_count) | |
else: | |
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. | |
special_tokens_count = 3 if sep_token_extra else 2 | |
if len(tokens_a) > max_seq_length - special_tokens_count: | |
tokens_a = tokens_a[:(max_seq_length - special_tokens_count)] | |
# The convention in BERT is: | |
# (a) For sequence pairs: | |
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
# (b) For single sequences: | |
# tokens: [CLS] the dog is hairy . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 | |
# | |
# Where "type_ids" are used to indicate whether this is the first | |
# sequence or the second sequence. The embedding vectors for `type=0` and | |
# `type=1` were learned during pre-training and are added to the wordpiece | |
# embedding vector (and position vector). This is not *strictly* necessary | |
# since the [SEP] token unambiguously separates the sequences, but it makes | |
# it easier for the model to learn the concept of sequences. | |
# | |
# For classification tasks, the first vector (corresponding to [CLS]) is | |
# used as as the "sentence vector". Note that this only makes sense because | |
# the entire model is fine-tuned. | |
tokens = tokens_a + [sep_token] | |
if sep_token_extra: | |
# roberta uses an extra separator b/w pairs of sentences | |
tokens += [sep_token] | |
segment_ids = [sequence_a_segment_id] * len(tokens) | |
if tokens_b: | |
tokens += tokens_b + [sep_token] | |
segment_ids += [sequence_b_segment_id] * (len(tokens_b) + 1) | |
if cls_token_at_end: | |
tokens = tokens + [cls_token] | |
segment_ids = segment_ids + [cls_token_segment_id] | |
else: | |
tokens = [cls_token] + tokens | |
segment_ids = [cls_token_segment_id] + segment_ids | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
padding_length = max_seq_length - len(input_ids) | |
if pad_on_left: | |
input_ids = ([pad_token] * padding_length) + input_ids | |
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask | |
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids | |
else: | |
input_ids = input_ids + ([pad_token] * padding_length) | |
input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length) | |
segment_ids = segment_ids + ([pad_token_segment_id] * padding_length) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
if output_mode == "classification": | |
label_id = label_map[example.label] | |
elif output_mode == "regression": | |
label_id = float(example.label) | |
else: | |
raise KeyError(output_mode) | |
if ex_index < 5: | |
logger.info("*** Example ***") | |
logger.info("guid: %s" % (example.guid)) | |
logger.info("tokens: %s" % " ".join( | |
[str(x) for x in tokens])) | |
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) | |
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) | |
logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) | |
logger.info("label: %s (id = %d)" % (example.label, label_id)) | |
features.append( | |
InputFeatures(input_ids=input_ids, | |
input_mask=input_mask, | |
segment_ids=segment_ids, | |
label_id=label_id)) | |
return features | |
def _truncate_seq_pair(tokens_a, tokens_b, max_length): | |
"""Truncates a sequence pair in place to the maximum length.""" | |
# This is a simple heuristic which will always truncate the longer sequence | |
# one token at a time. This makes more sense than truncating an equal percent | |
# of tokens from each, since if one sequence is very short then each token | |
# that's truncated likely contains more information than a longer sequence. | |
while True: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length <= max_length: | |
break | |
if len(tokens_a) > len(tokens_b): | |
tokens_a.pop() | |
else: | |
tokens_b.pop() | |
def simple_accuracy(preds, labels): | |
return (preds == labels).mean() | |
def acc_and_f1(preds, labels): | |
acc = simple_accuracy(preds, labels) | |
f1 = f1_score(y_true=labels, y_pred=preds) | |
return { | |
"acc": acc, | |
"f1": f1, | |
"acc_and_f1": (acc + f1) / 2, | |
} | |
def pearson_and_spearman(preds, labels): | |
pearson_corr = pearsonr(preds, labels)[0] | |
spearman_corr = spearmanr(preds, labels)[0] | |
return { | |
"pearson": pearson_corr, | |
"spearmanr": spearman_corr, | |
"corr": (pearson_corr + spearman_corr) / 2, | |
} | |
def compute_metrics(task_name, preds, labels): | |
assert len(preds) == len(labels) | |
if task_name == "cola": | |
return {"mcc": matthews_corrcoef(labels, preds)} | |
elif task_name == "sst-2": | |
return {"acc": simple_accuracy(preds, labels)} | |
elif task_name == "mrpc": | |
return acc_and_f1(preds, labels) | |
elif task_name == "sts-b": | |
return pearson_and_spearman(preds, labels) | |
elif task_name == "qqp": | |
return acc_and_f1(preds, labels) | |
elif task_name == "mnli": | |
return {"acc": simple_accuracy(preds, labels)} | |
elif task_name == "mnli-mm": | |
return {"acc": simple_accuracy(preds, labels)} | |
elif task_name == "qnli": | |
return {"acc": simple_accuracy(preds, labels)} | |
elif task_name == "rte": | |
return {"acc": simple_accuracy(preds, labels)} | |
elif task_name == "wnli": | |
return {"acc": simple_accuracy(preds, labels)} | |
elif task_name == "yelp": | |
return {"acc": simple_accuracy(preds, labels)} | |
else: | |
raise KeyError(task_name) | |
processors = { | |
"cola": ColaProcessor, | |
"mnli": MnliProcessor, | |
"mnli-mm": MnliMismatchedProcessor, | |
"mrpc": MrpcProcessor, | |
"sst-2": Sst2Processor, | |
"sts-b": StsbProcessor, | |
"qqp": QqpProcessor, | |
"qnli": QnliProcessor, | |
"rte": RteProcessor, | |
"wnli": WnliProcessor, | |
"yelp": YelpProcessor, | |
} | |
output_modes = { | |
"cola": "classification", | |
"mnli": "classification", | |
"mnli-mm": "classification", | |
"mrpc": "classification", | |
"sst-2": "classification", | |
"sts-b": "regression", | |
"qqp": "classification", | |
"qnli": "classification", | |
"rte": "classification", | |
"wnli": "classification", | |
"yelp": "classification", | |
} | |
GLUE_TASKS_NUM_LABELS = { | |
"cola": 2, | |
"mnli": 3, | |
"mrpc": 2, | |
"sst-2": 2, | |
"sts-b": 1, | |
"qqp": 2, | |
"qnli": 2, | |
"rte": 2, | |
"wnli": 2, | |
"yelp": 2, | |
} | |