Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Load SQuAD dataset. """ | |
from __future__ import absolute_import, division, print_function | |
import json | |
import logging | |
import math | |
import collections | |
from io import open | |
from pytorch_transformers.tokenization_bert import BasicTokenizer, whitespace_tokenize | |
# Required by XLNet evaluation method to compute optimal threshold (see write_predictions_extended() method) | |
from utils_squad_evaluate import find_all_best_thresh_v2, make_qid_to_has_ans, get_raw_scores | |
logger = logging.getLogger(__name__) | |
class SquadExample(object): | |
""" | |
A single training/test example for the Squad dataset. | |
For examples without an answer, the start and end position are -1. | |
""" | |
def __init__(self, | |
qas_id, | |
question_text, | |
doc_tokens, | |
orig_answer_text=None, | |
start_position=None, | |
end_position=None, | |
is_impossible=None): | |
self.qas_id = qas_id | |
self.question_text = question_text | |
self.doc_tokens = doc_tokens | |
self.orig_answer_text = orig_answer_text | |
self.start_position = start_position | |
self.end_position = end_position | |
self.is_impossible = is_impossible | |
def __str__(self): | |
return self.__repr__() | |
def __repr__(self): | |
s = "" | |
s += "qas_id: %s" % (self.qas_id) | |
s += ", question_text: %s" % ( | |
self.question_text) | |
s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) | |
if self.start_position: | |
s += ", start_position: %d" % (self.start_position) | |
if self.end_position: | |
s += ", end_position: %d" % (self.end_position) | |
if self.is_impossible: | |
s += ", is_impossible: %r" % (self.is_impossible) | |
return s | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, | |
unique_id, | |
example_index, | |
doc_span_index, | |
tokens, | |
token_to_orig_map, | |
token_is_max_context, | |
input_ids, | |
input_mask, | |
segment_ids, | |
cls_index, | |
p_mask, | |
paragraph_len, | |
start_position=None, | |
end_position=None, | |
is_impossible=None): | |
self.unique_id = unique_id | |
self.example_index = example_index | |
self.doc_span_index = doc_span_index | |
self.tokens = tokens | |
self.token_to_orig_map = token_to_orig_map | |
self.token_is_max_context = token_is_max_context | |
self.input_ids = input_ids | |
self.input_mask = input_mask | |
self.segment_ids = segment_ids | |
self.cls_index = cls_index | |
self.p_mask = p_mask | |
self.paragraph_len = paragraph_len | |
self.start_position = start_position | |
self.end_position = end_position | |
self.is_impossible = is_impossible | |
def read_squad_examples(input_file, is_training, version_2_with_negative): | |
"""Read a SQuAD json file into a list of SquadExample.""" | |
with open(input_file, "r", encoding='utf-8') as reader: | |
input_data = json.load(reader)["data"] | |
def is_whitespace(c): | |
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: | |
return True | |
return False | |
examples = [] | |
for entry in input_data: | |
for paragraph in entry["paragraphs"]: | |
paragraph_text = paragraph["context"] | |
doc_tokens = [] | |
char_to_word_offset = [] | |
prev_is_whitespace = True | |
for c in paragraph_text: | |
if is_whitespace(c): | |
prev_is_whitespace = True | |
else: | |
if prev_is_whitespace: | |
doc_tokens.append(c) | |
else: | |
doc_tokens[-1] += c | |
prev_is_whitespace = False | |
char_to_word_offset.append(len(doc_tokens) - 1) | |
for qa in paragraph["qas"]: | |
qas_id = qa["id"] | |
question_text = qa["question"] | |
start_position = None | |
end_position = None | |
orig_answer_text = None | |
is_impossible = False | |
if is_training: | |
if version_2_with_negative: | |
is_impossible = qa["is_impossible"] | |
if (len(qa["answers"]) != 1) and (not is_impossible): | |
raise ValueError( | |
"For training, each question should have exactly 1 answer.") | |
if not is_impossible: | |
answer = qa["answers"][0] | |
orig_answer_text = answer["text"] | |
answer_offset = answer["answer_start"] | |
answer_length = len(orig_answer_text) | |
start_position = char_to_word_offset[answer_offset] | |
end_position = char_to_word_offset[answer_offset + answer_length - 1] | |
# Only add answers where the text can be exactly recovered from the | |
# document. If this CAN'T happen it's likely due to weird Unicode | |
# stuff so we will just skip the example. | |
# | |
# Note that this means for training mode, every example is NOT | |
# guaranteed to be preserved. | |
actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) | |
cleaned_answer_text = " ".join( | |
whitespace_tokenize(orig_answer_text)) | |
if actual_text.find(cleaned_answer_text) == -1: | |
logger.warning("Could not find answer: '%s' vs. '%s'", | |
actual_text, cleaned_answer_text) | |
continue | |
else: | |
start_position = -1 | |
end_position = -1 | |
orig_answer_text = "" | |
example = SquadExample( | |
qas_id=qas_id, | |
question_text=question_text, | |
doc_tokens=doc_tokens, | |
orig_answer_text=orig_answer_text, | |
start_position=start_position, | |
end_position=end_position, | |
is_impossible=is_impossible) | |
examples.append(example) | |
return examples | |
def convert_examples_to_features(examples, tokenizer, max_seq_length, | |
doc_stride, max_query_length, is_training, | |
cls_token_at_end=False, | |
cls_token='[CLS]', sep_token='[SEP]', pad_token=0, | |
sequence_a_segment_id=0, sequence_b_segment_id=1, | |
cls_token_segment_id=0, pad_token_segment_id=0, | |
mask_padding_with_zero=True): | |
"""Loads a data file into a list of `InputBatch`s.""" | |
unique_id = 1000000000 | |
# cnt_pos, cnt_neg = 0, 0 | |
# max_N, max_M = 1024, 1024 | |
# f = np.zeros((max_N, max_M), dtype=np.float32) | |
features = [] | |
for (example_index, example) in enumerate(examples): | |
# if example_index % 100 == 0: | |
# logger.info('Converting %s/%s pos %s neg %s', example_index, len(examples), cnt_pos, cnt_neg) | |
query_tokens = tokenizer.tokenize(example.question_text) | |
if len(query_tokens) > max_query_length: | |
query_tokens = query_tokens[0:max_query_length] | |
tok_to_orig_index = [] | |
orig_to_tok_index = [] | |
all_doc_tokens = [] | |
for (i, token) in enumerate(example.doc_tokens): | |
orig_to_tok_index.append(len(all_doc_tokens)) | |
sub_tokens = tokenizer.tokenize(token) | |
for sub_token in sub_tokens: | |
tok_to_orig_index.append(i) | |
all_doc_tokens.append(sub_token) | |
tok_start_position = None | |
tok_end_position = None | |
if is_training and example.is_impossible: | |
tok_start_position = -1 | |
tok_end_position = -1 | |
if is_training and not example.is_impossible: | |
tok_start_position = orig_to_tok_index[example.start_position] | |
if example.end_position < len(example.doc_tokens) - 1: | |
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 | |
else: | |
tok_end_position = len(all_doc_tokens) - 1 | |
(tok_start_position, tok_end_position) = _improve_answer_span( | |
all_doc_tokens, tok_start_position, tok_end_position, tokenizer, | |
example.orig_answer_text) | |
# The -3 accounts for [CLS], [SEP] and [SEP] | |
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 | |
# We can have documents that are longer than the maximum sequence length. | |
# To deal with this we do a sliding window approach, where we take chunks | |
# of the up to our max length with a stride of `doc_stride`. | |
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name | |
"DocSpan", ["start", "length"]) | |
doc_spans = [] | |
start_offset = 0 | |
while start_offset < len(all_doc_tokens): | |
length = len(all_doc_tokens) - start_offset | |
if length > max_tokens_for_doc: | |
length = max_tokens_for_doc | |
doc_spans.append(_DocSpan(start=start_offset, length=length)) | |
if start_offset + length == len(all_doc_tokens): | |
break | |
start_offset += min(length, doc_stride) | |
for (doc_span_index, doc_span) in enumerate(doc_spans): | |
tokens = [] | |
token_to_orig_map = {} | |
token_is_max_context = {} | |
segment_ids = [] | |
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) | |
# Original TF implem also keep the classification token (set to 0) (not sure why...) | |
p_mask = [] | |
# CLS token at the beginning | |
if not cls_token_at_end: | |
tokens.append(cls_token) | |
segment_ids.append(cls_token_segment_id) | |
p_mask.append(0) | |
cls_index = 0 | |
# Query | |
for token in query_tokens: | |
tokens.append(token) | |
segment_ids.append(sequence_a_segment_id) | |
p_mask.append(1) | |
# SEP token | |
tokens.append(sep_token) | |
segment_ids.append(sequence_a_segment_id) | |
p_mask.append(1) | |
# Paragraph | |
for i in range(doc_span.length): | |
split_token_index = doc_span.start + i | |
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] | |
is_max_context = _check_is_max_context(doc_spans, doc_span_index, | |
split_token_index) | |
token_is_max_context[len(tokens)] = is_max_context | |
tokens.append(all_doc_tokens[split_token_index]) | |
segment_ids.append(sequence_b_segment_id) | |
p_mask.append(0) | |
paragraph_len = doc_span.length | |
# SEP token | |
tokens.append(sep_token) | |
segment_ids.append(sequence_b_segment_id) | |
p_mask.append(1) | |
# CLS token at the end | |
if cls_token_at_end: | |
tokens.append(cls_token) | |
segment_ids.append(cls_token_segment_id) | |
p_mask.append(0) | |
cls_index = len(tokens) - 1 # Index of classification token | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
while len(input_ids) < max_seq_length: | |
input_ids.append(pad_token) | |
input_mask.append(0 if mask_padding_with_zero else 1) | |
segment_ids.append(pad_token_segment_id) | |
p_mask.append(1) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
span_is_impossible = example.is_impossible | |
start_position = None | |
end_position = None | |
if is_training and not span_is_impossible: | |
# For training, if our document chunk does not contain an annotation | |
# we throw it out, since there is nothing to predict. | |
doc_start = doc_span.start | |
doc_end = doc_span.start + doc_span.length - 1 | |
out_of_span = False | |
if not (tok_start_position >= doc_start and | |
tok_end_position <= doc_end): | |
out_of_span = True | |
if out_of_span: | |
start_position = 0 | |
end_position = 0 | |
span_is_impossible = True | |
else: | |
doc_offset = len(query_tokens) + 2 | |
start_position = tok_start_position - doc_start + doc_offset | |
end_position = tok_end_position - doc_start + doc_offset | |
if is_training and span_is_impossible: | |
start_position = cls_index | |
end_position = cls_index | |
if example_index < 20: | |
logger.info("*** Example ***") | |
logger.info("unique_id: %s" % (unique_id)) | |
logger.info("example_index: %s" % (example_index)) | |
logger.info("doc_span_index: %s" % (doc_span_index)) | |
logger.info("tokens: %s" % " ".join(tokens)) | |
logger.info("token_to_orig_map: %s" % " ".join([ | |
"%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()])) | |
logger.info("token_is_max_context: %s" % " ".join([ | |
"%d:%s" % (x, y) for (x, y) in token_is_max_context.items() | |
])) | |
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) | |
logger.info( | |
"input_mask: %s" % " ".join([str(x) for x in input_mask])) | |
logger.info( | |
"segment_ids: %s" % " ".join([str(x) for x in segment_ids])) | |
if is_training and span_is_impossible: | |
logger.info("impossible example") | |
if is_training and not span_is_impossible: | |
answer_text = " ".join(tokens[start_position:(end_position + 1)]) | |
logger.info("start_position: %d" % (start_position)) | |
logger.info("end_position: %d" % (end_position)) | |
logger.info( | |
"answer: %s" % (answer_text)) | |
features.append( | |
InputFeatures( | |
unique_id=unique_id, | |
example_index=example_index, | |
doc_span_index=doc_span_index, | |
tokens=tokens, | |
token_to_orig_map=token_to_orig_map, | |
token_is_max_context=token_is_max_context, | |
input_ids=input_ids, | |
input_mask=input_mask, | |
segment_ids=segment_ids, | |
cls_index=cls_index, | |
p_mask=p_mask, | |
paragraph_len=paragraph_len, | |
start_position=start_position, | |
end_position=end_position, | |
is_impossible=span_is_impossible)) | |
unique_id += 1 | |
return features | |
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, | |
orig_answer_text): | |
"""Returns tokenized answer spans that better match the annotated answer.""" | |
# The SQuAD annotations are character based. We first project them to | |
# whitespace-tokenized words. But then after WordPiece tokenization, we can | |
# often find a "better match". For example: | |
# | |
# Question: What year was John Smith born? | |
# Context: The leader was John Smith (1895-1943). | |
# Answer: 1895 | |
# | |
# The original whitespace-tokenized answer will be "(1895-1943).". However | |
# after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match | |
# the exact answer, 1895. | |
# | |
# However, this is not always possible. Consider the following: | |
# | |
# Question: What country is the top exporter of electornics? | |
# Context: The Japanese electronics industry is the lagest in the world. | |
# Answer: Japan | |
# | |
# In this case, the annotator chose "Japan" as a character sub-span of | |
# the word "Japanese". Since our WordPiece tokenizer does not split | |
# "Japanese", we just use "Japanese" as the annotation. This is fairly rare | |
# in SQuAD, but does happen. | |
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) | |
for new_start in range(input_start, input_end + 1): | |
for new_end in range(input_end, new_start - 1, -1): | |
text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) | |
if text_span == tok_answer_text: | |
return (new_start, new_end) | |
return (input_start, input_end) | |
def _check_is_max_context(doc_spans, cur_span_index, position): | |
"""Check if this is the 'max context' doc span for the token.""" | |
# Because of the sliding window approach taken to scoring documents, a single | |
# token can appear in multiple documents. E.g. | |
# Doc: the man went to the store and bought a gallon of milk | |
# Span A: the man went to the | |
# Span B: to the store and bought | |
# Span C: and bought a gallon of | |
# ... | |
# | |
# Now the word 'bought' will have two scores from spans B and C. We only | |
# want to consider the score with "maximum context", which we define as | |
# the *minimum* of its left and right context (the *sum* of left and | |
# right context will always be the same, of course). | |
# | |
# In the example the maximum context for 'bought' would be span C since | |
# it has 1 left context and 3 right context, while span B has 4 left context | |
# and 0 right context. | |
best_score = None | |
best_span_index = None | |
for (span_index, doc_span) in enumerate(doc_spans): | |
end = doc_span.start + doc_span.length - 1 | |
if position < doc_span.start: | |
continue | |
if position > end: | |
continue | |
num_left_context = position - doc_span.start | |
num_right_context = end - position | |
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length | |
if best_score is None or score > best_score: | |
best_score = score | |
best_span_index = span_index | |
return cur_span_index == best_span_index | |
RawResult = collections.namedtuple("RawResult", | |
["unique_id", "start_logits", "end_logits"]) | |
def write_predictions(all_examples, all_features, all_results, n_best_size, | |
max_answer_length, do_lower_case, output_prediction_file, | |
output_nbest_file, output_null_log_odds_file, verbose_logging, | |
version_2_with_negative, null_score_diff_threshold): | |
"""Write final predictions to the json file and log-odds of null if needed.""" | |
logger.info("Writing predictions to: %s" % (output_prediction_file)) | |
logger.info("Writing nbest to: %s" % (output_nbest_file)) | |
example_index_to_features = collections.defaultdict(list) | |
for feature in all_features: | |
example_index_to_features[feature.example_index].append(feature) | |
unique_id_to_result = {} | |
for result in all_results: | |
unique_id_to_result[result.unique_id] = result | |
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"PrelimPrediction", | |
["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) | |
all_predictions = collections.OrderedDict() | |
all_nbest_json = collections.OrderedDict() | |
scores_diff_json = collections.OrderedDict() | |
for (example_index, example) in enumerate(all_examples): | |
features = example_index_to_features[example_index] | |
prelim_predictions = [] | |
# keep track of the minimum score of null start+end of position 0 | |
score_null = 1000000 # large and positive | |
min_null_feature_index = 0 # the paragraph slice with min null score | |
null_start_logit = 0 # the start logit at the slice with min null score | |
null_end_logit = 0 # the end logit at the slice with min null score | |
for (feature_index, feature) in enumerate(features): | |
result = unique_id_to_result[feature.unique_id] | |
start_indexes = _get_best_indexes(result.start_logits, n_best_size) | |
end_indexes = _get_best_indexes(result.end_logits, n_best_size) | |
# if we could have irrelevant answers, get the min score of irrelevant | |
if version_2_with_negative: | |
feature_null_score = result.start_logits[0] + result.end_logits[0] | |
if feature_null_score < score_null: | |
score_null = feature_null_score | |
min_null_feature_index = feature_index | |
null_start_logit = result.start_logits[0] | |
null_end_logit = result.end_logits[0] | |
for start_index in start_indexes: | |
for end_index in end_indexes: | |
# We could hypothetically create invalid predictions, e.g., predict | |
# that the start of the span is in the question. We throw out all | |
# invalid predictions. | |
if start_index >= len(feature.tokens): | |
continue | |
if end_index >= len(feature.tokens): | |
continue | |
if start_index not in feature.token_to_orig_map: | |
continue | |
if end_index not in feature.token_to_orig_map: | |
continue | |
if not feature.token_is_max_context.get(start_index, False): | |
continue | |
if end_index < start_index: | |
continue | |
length = end_index - start_index + 1 | |
if length > max_answer_length: | |
continue | |
prelim_predictions.append( | |
_PrelimPrediction( | |
feature_index=feature_index, | |
start_index=start_index, | |
end_index=end_index, | |
start_logit=result.start_logits[start_index], | |
end_logit=result.end_logits[end_index])) | |
if version_2_with_negative: | |
prelim_predictions.append( | |
_PrelimPrediction( | |
feature_index=min_null_feature_index, | |
start_index=0, | |
end_index=0, | |
start_logit=null_start_logit, | |
end_logit=null_end_logit)) | |
prelim_predictions = sorted( | |
prelim_predictions, | |
key=lambda x: (x.start_logit + x.end_logit), | |
reverse=True) | |
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"NbestPrediction", ["text", "start_logit", "end_logit"]) | |
seen_predictions = {} | |
nbest = [] | |
for pred in prelim_predictions: | |
if len(nbest) >= n_best_size: | |
break | |
feature = features[pred.feature_index] | |
if pred.start_index > 0: # this is a non-null prediction | |
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] | |
orig_doc_start = feature.token_to_orig_map[pred.start_index] | |
orig_doc_end = feature.token_to_orig_map[pred.end_index] | |
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] | |
tok_text = " ".join(tok_tokens) | |
# De-tokenize WordPieces that have been split off. | |
tok_text = tok_text.replace(" ##", "") | |
tok_text = tok_text.replace("##", "") | |
# Clean whitespace | |
tok_text = tok_text.strip() | |
tok_text = " ".join(tok_text.split()) | |
orig_text = " ".join(orig_tokens) | |
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) | |
if final_text in seen_predictions: | |
continue | |
seen_predictions[final_text] = True | |
else: | |
final_text = "" | |
seen_predictions[final_text] = True | |
nbest.append( | |
_NbestPrediction( | |
text=final_text, | |
start_logit=pred.start_logit, | |
end_logit=pred.end_logit)) | |
# if we didn't include the empty option in the n-best, include it | |
if version_2_with_negative: | |
if "" not in seen_predictions: | |
nbest.append( | |
_NbestPrediction( | |
text="", | |
start_logit=null_start_logit, | |
end_logit=null_end_logit)) | |
# In very rare edge cases we could only have single null prediction. | |
# So we just create a nonce prediction in this case to avoid failure. | |
if len(nbest)==1: | |
nbest.insert(0, | |
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) | |
# In very rare edge cases we could have no valid predictions. So we | |
# just create a nonce prediction in this case to avoid failure. | |
if not nbest: | |
nbest.append( | |
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) | |
assert len(nbest) >= 1 | |
total_scores = [] | |
best_non_null_entry = None | |
for entry in nbest: | |
total_scores.append(entry.start_logit + entry.end_logit) | |
if not best_non_null_entry: | |
if entry.text: | |
best_non_null_entry = entry | |
probs = _compute_softmax(total_scores) | |
nbest_json = [] | |
for (i, entry) in enumerate(nbest): | |
output = collections.OrderedDict() | |
output["text"] = entry.text | |
output["probability"] = probs[i] | |
output["start_logit"] = entry.start_logit | |
output["end_logit"] = entry.end_logit | |
nbest_json.append(output) | |
assert len(nbest_json) >= 1 | |
if not version_2_with_negative: | |
all_predictions[example.qas_id] = nbest_json[0]["text"] | |
else: | |
# predict "" iff the null score - the score of best non-null > threshold | |
score_diff = score_null - best_non_null_entry.start_logit - ( | |
best_non_null_entry.end_logit) | |
scores_diff_json[example.qas_id] = score_diff | |
if score_diff > null_score_diff_threshold: | |
all_predictions[example.qas_id] = "" | |
else: | |
all_predictions[example.qas_id] = best_non_null_entry.text | |
all_nbest_json[example.qas_id] = nbest_json | |
with open(output_prediction_file, "w") as writer: | |
writer.write(json.dumps(all_predictions, indent=4) + "\n") | |
with open(output_nbest_file, "w") as writer: | |
writer.write(json.dumps(all_nbest_json, indent=4) + "\n") | |
if version_2_with_negative: | |
with open(output_null_log_odds_file, "w") as writer: | |
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") | |
return all_predictions | |
# For XLNet (and XLM which uses the same head) | |
RawResultExtended = collections.namedtuple("RawResultExtended", | |
["unique_id", "start_top_log_probs", "start_top_index", | |
"end_top_log_probs", "end_top_index", "cls_logits"]) | |
def write_predictions_extended(all_examples, all_features, all_results, n_best_size, | |
max_answer_length, output_prediction_file, | |
output_nbest_file, | |
output_null_log_odds_file, orig_data_file, | |
start_n_top, end_n_top, version_2_with_negative, | |
tokenizer, verbose_logging): | |
""" XLNet write prediction logic (more complex than Bert's). | |
Write final predictions to the json file and log-odds of null if needed. | |
Requires utils_squad_evaluate.py | |
""" | |
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"PrelimPrediction", | |
["feature_index", "start_index", "end_index", | |
"start_log_prob", "end_log_prob"]) | |
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"NbestPrediction", ["text", "start_log_prob", "end_log_prob"]) | |
logger.info("Writing predictions to: %s", output_prediction_file) | |
# logger.info("Writing nbest to: %s" % (output_nbest_file)) | |
example_index_to_features = collections.defaultdict(list) | |
for feature in all_features: | |
example_index_to_features[feature.example_index].append(feature) | |
unique_id_to_result = {} | |
for result in all_results: | |
unique_id_to_result[result.unique_id] = result | |
all_predictions = collections.OrderedDict() | |
all_nbest_json = collections.OrderedDict() | |
scores_diff_json = collections.OrderedDict() | |
for (example_index, example) in enumerate(all_examples): | |
features = example_index_to_features[example_index] | |
prelim_predictions = [] | |
# keep track of the minimum score of null start+end of position 0 | |
score_null = 1000000 # large and positive | |
for (feature_index, feature) in enumerate(features): | |
result = unique_id_to_result[feature.unique_id] | |
cur_null_score = result.cls_logits | |
# if we could have irrelevant answers, get the min score of irrelevant | |
score_null = min(score_null, cur_null_score) | |
for i in range(start_n_top): | |
for j in range(end_n_top): | |
start_log_prob = result.start_top_log_probs[i] | |
start_index = result.start_top_index[i] | |
j_index = i * end_n_top + j | |
end_log_prob = result.end_top_log_probs[j_index] | |
end_index = result.end_top_index[j_index] | |
# We could hypothetically create invalid predictions, e.g., predict | |
# that the start of the span is in the question. We throw out all | |
# invalid predictions. | |
if start_index >= feature.paragraph_len - 1: | |
continue | |
if end_index >= feature.paragraph_len - 1: | |
continue | |
if not feature.token_is_max_context.get(start_index, False): | |
continue | |
if end_index < start_index: | |
continue | |
length = end_index - start_index + 1 | |
if length > max_answer_length: | |
continue | |
prelim_predictions.append( | |
_PrelimPrediction( | |
feature_index=feature_index, | |
start_index=start_index, | |
end_index=end_index, | |
start_log_prob=start_log_prob, | |
end_log_prob=end_log_prob)) | |
prelim_predictions = sorted( | |
prelim_predictions, | |
key=lambda x: (x.start_log_prob + x.end_log_prob), | |
reverse=True) | |
seen_predictions = {} | |
nbest = [] | |
for pred in prelim_predictions: | |
if len(nbest) >= n_best_size: | |
break | |
feature = features[pred.feature_index] | |
# XLNet un-tokenizer | |
# Let's keep it simple for now and see if we need all this later. | |
# | |
# tok_start_to_orig_index = feature.tok_start_to_orig_index | |
# tok_end_to_orig_index = feature.tok_end_to_orig_index | |
# start_orig_pos = tok_start_to_orig_index[pred.start_index] | |
# end_orig_pos = tok_end_to_orig_index[pred.end_index] | |
# paragraph_text = example.paragraph_text | |
# final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip() | |
# Previously used Bert untokenizer | |
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] | |
orig_doc_start = feature.token_to_orig_map[pred.start_index] | |
orig_doc_end = feature.token_to_orig_map[pred.end_index] | |
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] | |
tok_text = tokenizer.convert_tokens_to_string(tok_tokens) | |
# Clean whitespace | |
tok_text = tok_text.strip() | |
tok_text = " ".join(tok_text.split()) | |
orig_text = " ".join(orig_tokens) | |
final_text = get_final_text(tok_text, orig_text, tokenizer.do_lower_case, | |
verbose_logging) | |
if final_text in seen_predictions: | |
continue | |
seen_predictions[final_text] = True | |
nbest.append( | |
_NbestPrediction( | |
text=final_text, | |
start_log_prob=pred.start_log_prob, | |
end_log_prob=pred.end_log_prob)) | |
# In very rare edge cases we could have no valid predictions. So we | |
# just create a nonce prediction in this case to avoid failure. | |
if not nbest: | |
nbest.append( | |
_NbestPrediction(text="", start_log_prob=-1e6, | |
end_log_prob=-1e6)) | |
total_scores = [] | |
best_non_null_entry = None | |
for entry in nbest: | |
total_scores.append(entry.start_log_prob + entry.end_log_prob) | |
if not best_non_null_entry: | |
best_non_null_entry = entry | |
probs = _compute_softmax(total_scores) | |
nbest_json = [] | |
for (i, entry) in enumerate(nbest): | |
output = collections.OrderedDict() | |
output["text"] = entry.text | |
output["probability"] = probs[i] | |
output["start_log_prob"] = entry.start_log_prob | |
output["end_log_prob"] = entry.end_log_prob | |
nbest_json.append(output) | |
assert len(nbest_json) >= 1 | |
assert best_non_null_entry is not None | |
score_diff = score_null | |
scores_diff_json[example.qas_id] = score_diff | |
# note(zhiliny): always predict best_non_null_entry | |
# and the evaluation script will search for the best threshold | |
all_predictions[example.qas_id] = best_non_null_entry.text | |
all_nbest_json[example.qas_id] = nbest_json | |
with open(output_prediction_file, "w") as writer: | |
writer.write(json.dumps(all_predictions, indent=4) + "\n") | |
with open(output_nbest_file, "w") as writer: | |
writer.write(json.dumps(all_nbest_json, indent=4) + "\n") | |
if version_2_with_negative: | |
with open(output_null_log_odds_file, "w") as writer: | |
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") | |
with open(orig_data_file, "r", encoding='utf-8') as reader: | |
orig_data = json.load(reader)["data"] | |
qid_to_has_ans = make_qid_to_has_ans(orig_data) | |
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] | |
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] | |
exact_raw, f1_raw = get_raw_scores(orig_data, all_predictions) | |
out_eval = {} | |
find_all_best_thresh_v2(out_eval, all_predictions, exact_raw, f1_raw, scores_diff_json, qid_to_has_ans) | |
return out_eval | |
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): | |
"""Project the tokenized prediction back to the original text.""" | |
# When we created the data, we kept track of the alignment between original | |
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So | |
# now `orig_text` contains the span of our original text corresponding to the | |
# span that we predicted. | |
# | |
# However, `orig_text` may contain extra characters that we don't want in | |
# our prediction. | |
# | |
# For example, let's say: | |
# pred_text = steve smith | |
# orig_text = Steve Smith's | |
# | |
# We don't want to return `orig_text` because it contains the extra "'s". | |
# | |
# We don't want to return `pred_text` because it's already been normalized | |
# (the SQuAD eval script also does punctuation stripping/lower casing but | |
# our tokenizer does additional normalization like stripping accent | |
# characters). | |
# | |
# What we really want to return is "Steve Smith". | |
# | |
# Therefore, we have to apply a semi-complicated alignment heuristic between | |
# `pred_text` and `orig_text` to get a character-to-character alignment. This | |
# can fail in certain cases in which case we just return `orig_text`. | |
def _strip_spaces(text): | |
ns_chars = [] | |
ns_to_s_map = collections.OrderedDict() | |
for (i, c) in enumerate(text): | |
if c == " ": | |
continue | |
ns_to_s_map[len(ns_chars)] = i | |
ns_chars.append(c) | |
ns_text = "".join(ns_chars) | |
return (ns_text, ns_to_s_map) | |
# We first tokenize `orig_text`, strip whitespace from the result | |
# and `pred_text`, and check if they are the same length. If they are | |
# NOT the same length, the heuristic has failed. If they are the same | |
# length, we assume the characters are one-to-one aligned. | |
tokenizer = BasicTokenizer(do_lower_case=do_lower_case) | |
tok_text = " ".join(tokenizer.tokenize(orig_text)) | |
start_position = tok_text.find(pred_text) | |
if start_position == -1: | |
if verbose_logging: | |
logger.info( | |
"Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) | |
return orig_text | |
end_position = start_position + len(pred_text) - 1 | |
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) | |
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) | |
if len(orig_ns_text) != len(tok_ns_text): | |
if verbose_logging: | |
logger.info("Length not equal after stripping spaces: '%s' vs '%s'", | |
orig_ns_text, tok_ns_text) | |
return orig_text | |
# We then project the characters in `pred_text` back to `orig_text` using | |
# the character-to-character alignment. | |
tok_s_to_ns_map = {} | |
for (i, tok_index) in tok_ns_to_s_map.items(): | |
tok_s_to_ns_map[tok_index] = i | |
orig_start_position = None | |
if start_position in tok_s_to_ns_map: | |
ns_start_position = tok_s_to_ns_map[start_position] | |
if ns_start_position in orig_ns_to_s_map: | |
orig_start_position = orig_ns_to_s_map[ns_start_position] | |
if orig_start_position is None: | |
if verbose_logging: | |
logger.info("Couldn't map start position") | |
return orig_text | |
orig_end_position = None | |
if end_position in tok_s_to_ns_map: | |
ns_end_position = tok_s_to_ns_map[end_position] | |
if ns_end_position in orig_ns_to_s_map: | |
orig_end_position = orig_ns_to_s_map[ns_end_position] | |
if orig_end_position is None: | |
if verbose_logging: | |
logger.info("Couldn't map end position") | |
return orig_text | |
output_text = orig_text[orig_start_position:(orig_end_position + 1)] | |
return output_text | |
def _get_best_indexes(logits, n_best_size): | |
"""Get the n-best logits from a list.""" | |
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) | |
best_indexes = [] | |
for i in range(len(index_and_score)): | |
if i >= n_best_size: | |
break | |
best_indexes.append(index_and_score[i][0]) | |
return best_indexes | |
def _compute_softmax(scores): | |
"""Compute softmax probability over raw logits.""" | |
if not scores: | |
return [] | |
max_score = None | |
for score in scores: | |
if max_score is None or score > max_score: | |
max_score = score | |
exp_scores = [] | |
total_sum = 0.0 | |
for score in scores: | |
x = math.exp(score - max_score) | |
exp_scores.append(x) | |
total_sum += x | |
probs = [] | |
for score in exp_scores: | |
probs.append(score / total_sum) | |
return probs | |