export PYTHONPATH="${PYTHONPATH}:/workspace/code" # export TRAIN_FILE=../data/datasets/penn/train.txt # export TEST_FILE=../data/datasets/penn/test.txt # export TRAIN_FILE=../data/datasets/wikitext-2/train.txt # export TEST_FILE=../data/datasets/wikitext-2/valid.txt # export GPU_ID=0,1 # CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \ # --checkpoint_dir=../output/philly_clm_wiki2_0.0 \ # --output_dir=../output/philly_clm_wiki2_0.0 \ # --encoder_model_type=bert \ # --encoder_model_name_or_path=bert-base-uncased \ # --decoder_model_type=gpt2 \ # --decoder_model_name_or_path=gpt2 \ # --eval_data_file=$TEST_FILE \ # --per_gpu_eval_batch_size=1 # export TRAIN_FILE=../data/datasets/debug_data/train.txt # export TEST_FILE=../data/datasets/debug_data/test.txt # export GPU_ID=0,1 # CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \ # --checkpoint_dir=../output/local_lm_vae_debug_bert_gpt \ # --output_dir=../output/local_lm_vae_debug_bert_gpt \ # --encoder_model_type=bert \ # --encoder_model_name_or_path=bert-base-uncased \ # --decoder_model_type=gpt2 \ # --decoder_model_name_or_path=gpt2 \ # --eval_data_file=$TEST_FILE \ # --per_gpu_eval_batch_size=1 \ # --gloabl_step_eval 400 export TRAIN_FILE=../data/datasets/debug_data/train.txt export TEST_FILE=../data/datasets/debug_data/test.txt export GPU_ID=1 # # interpolation from pre-trained model on wiki # CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ # --dataset Debug \ # --checkpoint_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta1.0_d1.0_ro0.5_ra0.25_768_v2 \ # --output_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta1.0_d1.0_ro0.5_ra0.25_768_v2 \ # --encoder_model_type=bert \ # --encoder_model_name_or_path=bert-base-cased \ # --decoder_model_type=gpt2 \ # --decoder_model_name_or_path=gpt2 \ # --train_data_file=$TRAIN_FILE \ # --eval_data_file=$TEST_FILE \ # --per_gpu_eval_batch_size=1 \ # --gloabl_step_eval 508523 \ # --block_size 100 \ # --max_seq_length 100 \ # --latent_size 768 \ # --play_mode interpolation \ # --num_interpolation_steps 10 # # reconstruction from pre-trained model on wiki # CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ # --dataset Debug \ # --checkpoint_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta0.0_d1.0_ro0.5_ra0.25_32_v2 \ # --output_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta0.0_d1.0_ro0.5_ra0.25_32_v2 \ # --encoder_model_type=bert \ # --encoder_model_name_or_path=bert-base-cased \ # --decoder_model_type=gpt2 \ # --decoder_model_name_or_path=gpt2 \ # --train_data_file=$TRAIN_FILE \ # --eval_data_file=$TEST_FILE \ # --per_gpu_eval_batch_size=1 \ # --gloabl_step_eval 400000 \ # --block_size 100 \ # --max_seq_length 100 \ # --latent_size 32 \ # --play_mode reconstrction # CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ # --dataset Debug \ # --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ # --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ # --encoder_model_type=bert \ # --encoder_model_name_or_path=bert-base-cased \ # --decoder_model_type=gpt2 \ # --decoder_model_name_or_path=gpt2 \ # --train_data_file=$TRAIN_FILE \ # --eval_data_file=$TEST_FILE \ # --per_gpu_eval_batch_size=1 \ # --gloabl_step_eval 31250 \ # --block_size 100 \ # --max_seq_length 100 \ # --latent_size 768 \ # --play_mode interpolation \ # --num_interpolation_steps 10 # reconstrction # CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ # --dataset Debug \ # --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ # --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ # --encoder_model_type=bert \ # --encoder_model_name_or_path=bert-base-cased \ # --decoder_model_type=gpt2 \ # --decoder_model_name_or_path=gpt2 \ # --train_data_file=$TRAIN_FILE \ # --eval_data_file=$TEST_FILE \ # --per_gpu_eval_batch_size=1 \ # --gloabl_step_eval 31250 \ # --block_size 100 \ # --max_seq_length 100 \ # --latent_size 768 \ # --play_mode reconstrction # interact_with_user_input CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ --dataset Debug \ --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ --encoder_model_type=bert \ --encoder_model_name_or_path=bert-base-cased \ --decoder_model_type=gpt2 \ --decoder_model_name_or_path=gpt2 \ --train_data_file=$TRAIN_FILE \ --eval_data_file=$TEST_FILE \ --per_gpu_eval_batch_size=1 \ --gloabl_step_eval 31250 \ --block_size 100 \ --max_seq_length 100 \ --latent_size 768 \ --interact_with_user_input \ --play_mode analogy \ --sent_source="a yellow cat likes to chase a long string ." \ --sent_target="a yellow cat likes to chase a short string ." \ --sent_input="a brown dog likes to eat long pasta ." \ --degree_to_target=1.0 # interact_with_user_input # CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ # --dataset Debug \ # --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ # --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ # --encoder_model_type=bert \ # --encoder_model_name_or_path=bert-base-cased \ # --decoder_model_type=gpt2 \ # --decoder_model_name_or_path=gpt2 \ # --train_data_file=$TRAIN_FILE \ # --eval_data_file=$TEST_FILE \ # --per_gpu_eval_batch_size=1 \ # --gloabl_step_eval 31250 \ # --block_size 100 \ # --max_seq_length 100 \ # --latent_size 768 \ # --interact_with_user_input \ # --play_mode interpolation \ # --sent_source="a yellow cat likes to chase a short string ." \ # --sent_target="a brown dog likes to eat his food very slowly ." \ # --num_interpolation_steps=10 # export TRAIN_FILE=../data/datasets/debug_data/train.txt # export TEST_FILE=../data/datasets/debug_data/test.txt # export GPU_ID=1 # CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \ # --dataset Debug \ # --checkpoint_dir=../output/local_lm_vae_debug_bert_gpt \ # --output_dir=../output/local_lm_vae_debug_bert_gpt \ # --encoder_model_type=bert \ # --encoder_model_name_or_path=bert-base-uncased \ # --decoder_model_type=gpt2 \ # --decoder_model_name_or_path=gpt2 \ # --train_data_file=$TRAIN_FILE \ # --eval_data_file=$TEST_FILE \ # --per_gpu_eval_batch_size=1 \ # --gloabl_step_eval 800 \ # --total_sents 10