# export TRAIN_FILE=../data/datasets/penn/train.txt # export TEST_FILE=../data/datasets/penn/test.txt # export GPU_ID=0,1 # CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_finetuning_baseline.py \ # --output_dir=../output/local_lm_gpt_penn \ # --dataset Yahoo \ # --model_type=gpt2 \ # --model_name_or_path=gpt2 \ # --train_data_file=$TRAIN_FILE \ # --do_train \ # --do_eval \ # --eval_data_file=$TEST_FILE \ # --num_train_epochs 2.0 \ # --save_steps 1000 \ # --logging_steps 100 \ # --overwrite_output_dir \ # --per_gpu_train_batch_size=2 \ # --gloabl_step_eval 600 export PYTHONPATH="${PYTHONPATH}:/workspace/code" export TRAIN_FILE=../data/datasets/debug_data/train.txt export TEST_FILE=../data/datasets/debug_data/test.txt export GPU_ID=0,1 CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_gpt2_training.py \ --dataset Debug \ --output_dir=../output/local_gpt2_debug \ --encoder_model_type=bert \ --encoder_model_name_or_path=bert-base-cased \ --decoder_model_type=gpt2 \ --decoder_model_name_or_path=gpt2 \ --train_data_file=$TRAIN_FILE \ --do_train \ --do_eval \ --beta 1.0 \ --ratio_zero .5 \ --ratio_increase 0.25 \ --eval_data_file=$TEST_FILE \ --num_train_epochs 20.0 \ --save_steps 20 \ --logging_steps 4 \ --overwrite_output_dir \ --per_gpu_train_batch_size 1 \ --gloabl_step_eval 4 \ --block_size 50 \