export PYTHONPATH="${PYTHONPATH}:/workspace/code" export GPU_ID=0,1 export TRAIN_FILE=../data/datasets/wikipedia_json_64/ # CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_pretraining.py \ # --output_dir=../output/local_lm_vae_wikipedia_pretraining \ # --dataset wikipedia \ # --encoder_model_type=bert \ # --encoder_model_name_or_path=bert-base-cased \ # --decoder_model_type=gpt2 \ # --decoder_model_name_or_path=gpt2 \ # --beta 0.0 \ # --ratio_zero 1.0 \ # --ratio_increase 0.1 \ # --do_train \ # --fb_mode 1 \ # --train_data_file=$TRAIN_FILE \ # --num_train_epochs 1.0 \ # --save_steps 10000 \ # --logging_steps 1000 \ # --overwrite_output_dir \ # --per_gpu_train_batch_size=8 \ # --block_size 256 CUDA_VISIBLE_DEVICES=$GPU_ID python -m torch.distributed.launch --nproc_per_node 2 examples/big_ae/run_lm_vae_pretraining_distributed.py \ --output_dir=../output/local_lm_vae_wikipedia_pretraining \ --dataset wikipedia \ --encoder_model_type=bert \ --encoder_model_name_or_path=bert-base-cased \ --decoder_model_type=gpt2 \ --decoder_model_name_or_path=gpt2 \ --beta 0.0 \ --ratio_zero 1.0 \ --ratio_increase 0.1 \ --do_train \ --fb_mode 1 \ --train_data_file=$TRAIN_FILE \ --num_train_epochs 1.0 \ --save_steps 10000 \ --logging_steps 1000 \ --overwrite_output_dir \ --per_gpu_train_batch_size=8 \ --block_size 256