export PYTHONPATH="${PYTHONPATH}:/workspace/code" export TRAIN_FILE=../data/datasets/penn/train.txt export TEST_FILE=../data/datasets/penn/test.txt export GPU_ID=0,1 CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_lm_vae_training.py \ --dataset Penn \ --checkpoint_dir=../output/local_bert_gpt_init \ --output_dir=../output/local_bert_gpt_init \ --encoder_model_type=bert \ --encoder_model_name_or_path=bert-base-cased \ --decoder_model_type=gpt2 \ --decoder_model_name_or_path=gpt2 \ --train_data_file=$TRAIN_FILE \ --do_train \ --do_eval \ --beta 1.0 \ --ratio_zero .5 \ --ratio_increase 0.25 \ --eval_data_file=$TEST_FILE \ --num_train_epochs 2.0 \ --save_steps 20 \ --logging_steps 4 \ --overwrite_output_dir \ --per_gpu_train_batch_size 1 \ --gloabl_step_eval 60000 \ --block_size 128 \ --latent_as_gpt_emb 1 \ --latent_as_gpt_memory 1 \ --save_bert_gpt_init \ --latent_size 768 # --use_pretrained_model