Spaces:
Running
on
L40S
Running
on
L40S
Commit
Β·
bf71575
1
Parent(s):
de9a113
misc
Browse files- app.py +3 -2
- config.py +1 -1
- last_epoch_ckpt/diffusion_pytorch_model.safetensors +1 -1
- lightning_app_deprecated.py +460 -0
app.py
CHANGED
@@ -106,14 +106,15 @@ def get_user_emb(embs, ys):
|
|
106 |
if len(positives) == 0:
|
107 |
positives = torch.zeros_like(im_emb)[None]
|
108 |
else:
|
109 |
-
|
|
|
110 |
positives = torch.stack(embs, 1)
|
111 |
|
112 |
negs = [e for e, ys in zip(embs, ys) if ys == 0]
|
113 |
if len(negs) == 0:
|
114 |
negatives = torch.zeros_like(im_emb)[None]
|
115 |
else:
|
116 |
-
negative_embs = random.sample(negs, min(4, len(negs))) + negs[-4:]
|
117 |
negatives = torch.stack(negative_embs, 1)
|
118 |
# if random.random() < .5:
|
119 |
# negatives = torch.zeros_like(negatives)
|
|
|
106 |
if len(positives) == 0:
|
107 |
positives = torch.zeros_like(im_emb)[None]
|
108 |
else:
|
109 |
+
# take last 8 TODO verify this is chronolgical; should be and also k-4 random ones.
|
110 |
+
embs = random.sample(positives, k=min(k-8, len(positives))) + positives[-8:]
|
111 |
positives = torch.stack(embs, 1)
|
112 |
|
113 |
negs = [e for e, ys in zip(embs, ys) if ys == 0]
|
114 |
if len(negs) == 0:
|
115 |
negatives = torch.zeros_like(im_emb)[None]
|
116 |
else:
|
117 |
+
negative_embs = random.sample(negs, min(k-4, len(negs))) + negs[-4:]
|
118 |
negatives = torch.stack(negative_embs, 1)
|
119 |
# if random.random() < .5:
|
120 |
# negatives = torch.zeros_like(negatives)
|
config.py
CHANGED
@@ -12,5 +12,5 @@ batch_size = 16
|
|
12 |
number_k_clip_embed = 16 # divide by this to determine bundling together of sequences -> CLIP
|
13 |
num_workers = 32
|
14 |
seed = 107
|
15 |
-
k =
|
16 |
# TODO config option to swap to diffusion?
|
|
|
12 |
number_k_clip_embed = 16 # divide by this to determine bundling together of sequences -> CLIP
|
13 |
num_workers = 32
|
14 |
seed = 107
|
15 |
+
k = 16
|
16 |
# TODO config option to swap to diffusion?
|
last_epoch_ckpt/diffusion_pytorch_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 136790920
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33d7ca8a1d0f179ade0aa00cf9d622b0ac60ea2b58c79933a9212c54b5d6f719
|
3 |
size 136790920
|
lightning_app_deprecated.py
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import random
|
4 |
+
import time
|
5 |
+
import torch
|
6 |
+
import glob
|
7 |
+
|
8 |
+
import config
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
from diffusers import EulerDiscreteScheduler, LCMScheduler, AutoencoderTiny, UNet2DConditionModel, AutoencoderKL, AutoPipelineForText2Image
|
11 |
+
from transformers import CLIPVisionModelWithProjection
|
12 |
+
from safetensors.torch import load_file
|
13 |
+
|
14 |
+
from model import get_model_and_tokenizer
|
15 |
+
|
16 |
+
model, tokenizer = get_model_and_tokenizer(config.model_path, 'cuda', torch.bfloat16)
|
17 |
+
|
18 |
+
del model.kandinsky_pipe
|
19 |
+
del tokenizer
|
20 |
+
|
21 |
+
torch.set_float32_matmul_precision('high')
|
22 |
+
|
23 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
24 |
+
sdxl_lightening = "ByteDance/SDXL-Lightning"
|
25 |
+
ckpt = "sdxl_lightning_8step_unet.safetensors"
|
26 |
+
unet = UNet2DConditionModel.from_config(model_id, subfolder="unet", low_cpu_mem_usage=True, device_map='cuda').to(torch.float16)
|
27 |
+
unet.load_state_dict(load_file(hf_hub_download(sdxl_lightening, ckpt)))
|
28 |
+
|
29 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="sdxl_models/image_encoder", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map='cuda')
|
30 |
+
pipe = AutoPipelineForText2Image.from_pretrained(model_id, unet=unet, torch_dtype=torch.float16, variant="fp16", image_encoder=image_encoder, low_cpu_mem_usage=True)
|
31 |
+
pipe.unet._load_ip_adapter_weights(torch.load(hf_hub_download('h94/IP-Adapter', 'sdxl_models/ip-adapter_sdxl.bin')))
|
32 |
+
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
|
33 |
+
pipe.register_modules(image_encoder = image_encoder)
|
34 |
+
pipe.set_ip_adapter_scale(0.8)
|
35 |
+
|
36 |
+
#pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
37 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
38 |
+
|
39 |
+
pipe.to(device='cuda').to(dtype=config.dtype)
|
40 |
+
output_hidden_state = False
|
41 |
+
|
42 |
+
|
43 |
+
# TODO unify/merge origin and this
|
44 |
+
# TODO save & restart from (if it exists) dataframe parquet
|
45 |
+
|
46 |
+
device = "cuda"
|
47 |
+
|
48 |
+
k = config.k
|
49 |
+
|
50 |
+
import spaces
|
51 |
+
import matplotlib.pyplot as plt
|
52 |
+
|
53 |
+
import os
|
54 |
+
import gradio as gr
|
55 |
+
import pandas as pd
|
56 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
57 |
+
|
58 |
+
import random
|
59 |
+
import time
|
60 |
+
from PIL import Image
|
61 |
+
# from safety_checker_improved import maybe_nsfw
|
62 |
+
|
63 |
+
|
64 |
+
torch.set_grad_enabled(False)
|
65 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
66 |
+
torch.backends.cudnn.allow_tf32 = True
|
67 |
+
|
68 |
+
prevs_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate', 'from_user_id', 'text', 'gemb'])
|
69 |
+
|
70 |
+
import spaces
|
71 |
+
start_time = time.time()
|
72 |
+
|
73 |
+
####################### Setup Model
|
74 |
+
from diffusers import EulerDiscreteScheduler
|
75 |
+
from PIL import Image
|
76 |
+
import uuid
|
77 |
+
|
78 |
+
|
79 |
+
@spaces.GPU()
|
80 |
+
def generate_gpu(in_im_embs, prompt='the scene'):
|
81 |
+
with torch.no_grad():
|
82 |
+
in_im_embs = in_im_embs.to('cuda')
|
83 |
+
|
84 |
+
negative_image_embeds = in_im_embs[0]# if random.random() < .3 else model.prior_pipe.get_zero_embed()
|
85 |
+
positive_image_embeds = in_im_embs[1]
|
86 |
+
|
87 |
+
in_im_embs = in_im_embs.to('cuda').view(2, 1, -1)
|
88 |
+
images = pipe(prompt=prompt, guidance_scale=4, added_cond_kwargs={}, ip_adapter_image_embeds=[in_im_embs], num_inference_steps=8).images[0]
|
89 |
+
im_emb, _ = pipe.encode_image(
|
90 |
+
images, 'cuda', 1, output_hidden_state
|
91 |
+
)
|
92 |
+
im_emb = im_emb.detach().to('cpu').to(torch.float32)
|
93 |
+
return images, im_emb
|
94 |
+
|
95 |
+
|
96 |
+
def generate(in_im_embs, ):
|
97 |
+
output, im_emb = generate_gpu(in_im_embs)
|
98 |
+
nsfw = False#maybe_nsfw(output.images[0])
|
99 |
+
|
100 |
+
name = str(uuid.uuid4()).replace("-", "")
|
101 |
+
path = f"/tmp/{name}.png"
|
102 |
+
|
103 |
+
if nsfw:
|
104 |
+
gr.Warning("NSFW content detected.")
|
105 |
+
# TODO could return an automatic dislike of auto dislike on the backend for neither as well; just would need refactoring.
|
106 |
+
return None, im_emb
|
107 |
+
|
108 |
+
output.save(path)
|
109 |
+
return path, im_emb
|
110 |
+
|
111 |
+
|
112 |
+
#######################
|
113 |
+
|
114 |
+
@spaces.GPU()
|
115 |
+
def sample_embs(prompt_embeds):
|
116 |
+
latent = torch.randn(prompt_embeds.shape[0], 1, prompt_embeds.shape[-1])
|
117 |
+
if prompt_embeds.shape[1] < k:
|
118 |
+
prompt_embeds = torch.nn.functional.pad(prompt_embeds, [0, 0, 0, k-prompt_embeds.shape[1]])
|
119 |
+
assert prompt_embeds.shape[1] == k, f"The model is set to take `k`` cond image embeds but is shape {prompt_embeds.shape}"
|
120 |
+
image_embeds = model(latent.to('cuda'), prompt_embeds.to('cuda')).predicted_image_embedding
|
121 |
+
return image_embeds
|
122 |
+
|
123 |
+
@spaces.GPU()
|
124 |
+
def get_user_emb(embs, ys):
|
125 |
+
positives = [e for e, ys in zip(embs, ys) if ys == 1]
|
126 |
+
if len(positives) == 0:
|
127 |
+
positives = torch.zeros_like(im_emb)[None]
|
128 |
+
else:
|
129 |
+
embs = random.sample(positives, min(k-4, len(positives))) + positives[-4:]
|
130 |
+
positives = torch.stack(embs, 1)
|
131 |
+
|
132 |
+
negs = [e for e, ys in zip(embs, ys) if ys == 0]
|
133 |
+
if len(negs) == 0:
|
134 |
+
negatives = torch.zeros_like(im_emb)[None]
|
135 |
+
else:
|
136 |
+
negative_embs = random.sample(negs, min(k-4, len(negs))) + negs[-4:]
|
137 |
+
negatives = torch.stack(negative_embs, 1)
|
138 |
+
# if random.random() < .5:
|
139 |
+
# negatives = torch.zeros_like(negatives)
|
140 |
+
|
141 |
+
image_embeds = torch.stack([sample_embs(negatives), sample_embs(positives)])
|
142 |
+
|
143 |
+
return image_embeds
|
144 |
+
|
145 |
+
|
146 |
+
def background_next_image():
|
147 |
+
global prevs_df
|
148 |
+
# only let it get N (maybe 3) ahead of the user
|
149 |
+
#not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
|
150 |
+
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
|
151 |
+
if len(rated_rows) < 4:
|
152 |
+
time.sleep(.1)
|
153 |
+
# not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
|
154 |
+
return
|
155 |
+
|
156 |
+
user_id_list = set(rated_rows['latest_user_to_rate'].to_list())
|
157 |
+
for uid in user_id_list:
|
158 |
+
rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is not None for i in prevs_df.iterrows()]]
|
159 |
+
not_rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is None for i in prevs_df.iterrows()]]
|
160 |
+
|
161 |
+
# we need to intersect not_rated_rows from this user's embed > 7. Just add a new column on which user_id spawned the
|
162 |
+
# media.
|
163 |
+
|
164 |
+
unrated_from_user = not_rated_rows[[i[1]['from_user_id'] == uid for i in not_rated_rows.iterrows()]]
|
165 |
+
|
166 |
+
# we don't compute more after n are in the queue for them
|
167 |
+
if len(unrated_from_user) >= 10:
|
168 |
+
continue
|
169 |
+
|
170 |
+
if len(rated_rows) < 4:
|
171 |
+
continue
|
172 |
+
|
173 |
+
global glob_idx
|
174 |
+
glob_idx += 1
|
175 |
+
|
176 |
+
ems = rated_rows['embeddings'].to_list()
|
177 |
+
ys = [i[uid][0] for i in rated_rows['user:rating'].to_list()]
|
178 |
+
|
179 |
+
emz = get_user_emb(ems, ys)
|
180 |
+
img, embs = generate(emz)
|
181 |
+
|
182 |
+
if img:
|
183 |
+
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate', 'text', 'gemb'])
|
184 |
+
tmp_df['paths'] = [img]
|
185 |
+
tmp_df['embeddings'] = [embs.to(torch.float32).to('cpu')]
|
186 |
+
tmp_df['user:rating'] = [{' ': ' '}]
|
187 |
+
tmp_df['from_user_id'] = [uid]
|
188 |
+
tmp_df['text'] = ['']
|
189 |
+
prevs_df = pd.concat((prevs_df, tmp_df))
|
190 |
+
# we can free up storage by deleting the image
|
191 |
+
if len(prevs_df) > 500:
|
192 |
+
oldest_path = prevs_df.iloc[6]['paths']
|
193 |
+
if os.path.isfile(oldest_path):
|
194 |
+
os.remove(oldest_path)
|
195 |
+
else:
|
196 |
+
# If it fails, inform the user.
|
197 |
+
print("Error: %s file not found" % oldest_path)
|
198 |
+
# only keep 50 images & embeddings & ips, then remove oldest besides calibrating
|
199 |
+
prevs_df = pd.concat((prevs_df.iloc[:6], prevs_df.iloc[7:]))
|
200 |
+
|
201 |
+
def pluck_img(user_id):
|
202 |
+
# TODO pluck images based on similarity but also based on diversity by cluster every few times.
|
203 |
+
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) is not None for i in prevs_df.iterrows()]]
|
204 |
+
ems = rated_rows['embeddings'].to_list()
|
205 |
+
ys = [i[user_id][0] for i in rated_rows['user:rating'].to_list()]
|
206 |
+
user_emb = get_user_emb(ems, ys)
|
207 |
+
|
208 |
+
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, 'gone') == 'gone' for i in prevs_df.iterrows()]]
|
209 |
+
while len(not_rated_rows) == 0:
|
210 |
+
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, 'gone') == 'gone' for i in prevs_df.iterrows()]]
|
211 |
+
time.sleep(.1)
|
212 |
+
# TODO optimize this lol
|
213 |
+
|
214 |
+
# NOTE could opt for only showing their own or prioritizing their own media.
|
215 |
+
unrated_from_user = not_rated_rows[[i[1]['from_user_id'] == user_id for i in not_rated_rows.iterrows()]]
|
216 |
+
|
217 |
+
best_sim = -10000000
|
218 |
+
for i in not_rated_rows.iterrows():
|
219 |
+
# TODO sloppy .to but it is 3am.
|
220 |
+
sim = torch.cosine_similarity(i[1]['embeddings'].detach().to('cpu'), user_emb.detach().to('cpu'), -1)
|
221 |
+
if len(sim) > 1: sim = sim[1]
|
222 |
+
if sim.squeeze() > best_sim:
|
223 |
+
best_sim = sim
|
224 |
+
best_row = i[1]
|
225 |
+
img = best_row['paths']
|
226 |
+
return img
|
227 |
+
|
228 |
+
def next_image(calibrate_prompts, user_id):
|
229 |
+
with torch.no_grad():
|
230 |
+
# once we've done so many random calibration prompts out of the full media
|
231 |
+
if len(m_calibrate) - len(calibrate_prompts) < 5:
|
232 |
+
cal_video = calibrate_prompts.pop(random.randint(0, len(calibrate_prompts)-1))
|
233 |
+
image = prevs_df[prevs_df['paths'] == cal_video]['paths'].to_list()[0]
|
234 |
+
# we switch to just getting media by similarity.
|
235 |
+
else:
|
236 |
+
image = pluck_img(user_id)
|
237 |
+
return image, calibrate_prompts
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
def start(_, calibrate_prompts, user_id, request: gr.Request):
|
245 |
+
user_id = int(str(time.time())[-7:].replace('.', ''))
|
246 |
+
image, calibrate_prompts = next_image(calibrate_prompts, user_id)
|
247 |
+
return [
|
248 |
+
gr.Button(value='π', interactive=True),
|
249 |
+
gr.Button(value='Neither (Space)', interactive=True, visible=False),
|
250 |
+
gr.Button(value='π', interactive=True),
|
251 |
+
gr.Button(value='Start', interactive=False),
|
252 |
+
gr.Button(value='π Content', interactive=True, visible=False),
|
253 |
+
gr.Button(value='π Style', interactive=True, visible=False),
|
254 |
+
image,
|
255 |
+
calibrate_prompts,
|
256 |
+
user_id,
|
257 |
+
]
|
258 |
+
|
259 |
+
|
260 |
+
def choose(img, choice, calibrate_prompts, user_id, request: gr.Request):
|
261 |
+
global prevs_df
|
262 |
+
|
263 |
+
if choice == 'π':
|
264 |
+
choice = [1, 1]
|
265 |
+
elif choice == 'Neither (Space)':
|
266 |
+
img, calibrate_prompts = next_image(calibrate_prompts, user_id)
|
267 |
+
return img, calibrate_prompts
|
268 |
+
elif choice == 'π':
|
269 |
+
choice = [0, 0]
|
270 |
+
elif choice == 'π Style':
|
271 |
+
choice = [0, 1]
|
272 |
+
elif choice == 'π Content':
|
273 |
+
choice = [1, 0]
|
274 |
+
else:
|
275 |
+
assert False, f'choice is {choice}'
|
276 |
+
|
277 |
+
# if we detected NSFW, leave that area of latent space regardless of how they rated chosen.
|
278 |
+
# TODO skip allowing rating & just continue
|
279 |
+
if img is None:
|
280 |
+
print('NSFW -- choice is disliked')
|
281 |
+
choice = [0, 0]
|
282 |
+
|
283 |
+
row_mask = [p.split('/')[-1] in img for p in prevs_df['paths'].to_list()]
|
284 |
+
# if it's still in the dataframe, add the choice
|
285 |
+
if len(prevs_df.loc[row_mask, 'user:rating']) > 0:
|
286 |
+
prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice
|
287 |
+
prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id]
|
288 |
+
else:
|
289 |
+
print('Image apparently removed', img)
|
290 |
+
img, calibrate_prompts = next_image(calibrate_prompts, user_id)
|
291 |
+
return img, calibrate_prompts
|
292 |
+
|
293 |
+
css = '''.gradio-container{max-width: 700px !important}
|
294 |
+
#description{text-align: center}
|
295 |
+
#description h1, #description h3{display: block}
|
296 |
+
#description p{margin-top: 0}
|
297 |
+
.fade-in-out {animation: fadeInOut 3s forwards}
|
298 |
+
@keyframes fadeInOut {
|
299 |
+
0% {
|
300 |
+
background: var(--bg-color);
|
301 |
+
}
|
302 |
+
100% {
|
303 |
+
background: var(--button-secondary-background-fill);
|
304 |
+
}
|
305 |
+
}
|
306 |
+
'''
|
307 |
+
js_head = '''
|
308 |
+
<script>
|
309 |
+
document.addEventListener('keydown', function(event) {
|
310 |
+
if (event.key === 'a' || event.key === 'A') {
|
311 |
+
// Trigger click on 'dislike' if 'A' is pressed
|
312 |
+
document.getElementById('dislike').click();
|
313 |
+
} else if (event.key === ' ' || event.keyCode === 32) {
|
314 |
+
// Trigger click on 'neither' if Spacebar is pressed
|
315 |
+
document.getElementById('neither').click();
|
316 |
+
} else if (event.key === 'l' || event.key === 'L') {
|
317 |
+
// Trigger click on 'like' if 'L' is pressed
|
318 |
+
document.getElementById('like').click();
|
319 |
+
}
|
320 |
+
});
|
321 |
+
function fadeInOut(button, color) {
|
322 |
+
button.style.setProperty('--bg-color', color);
|
323 |
+
button.classList.remove('fade-in-out');
|
324 |
+
void button.offsetWidth; // This line forces a repaint by accessing a DOM property
|
325 |
+
|
326 |
+
button.classList.add('fade-in-out');
|
327 |
+
button.addEventListener('animationend', () => {
|
328 |
+
button.classList.remove('fade-in-out'); // Reset the animation state
|
329 |
+
}, {once: true});
|
330 |
+
}
|
331 |
+
document.body.addEventListener('click', function(event) {
|
332 |
+
const target = event.target;
|
333 |
+
if (target.id === 'dislike') {
|
334 |
+
fadeInOut(target, '#ff1717');
|
335 |
+
} else if (target.id === 'like') {
|
336 |
+
fadeInOut(target, '#006500');
|
337 |
+
} else if (target.id === 'neither') {
|
338 |
+
fadeInOut(target, '#cccccc');
|
339 |
+
}
|
340 |
+
});
|
341 |
+
|
342 |
+
</script>
|
343 |
+
'''
|
344 |
+
|
345 |
+
with gr.Blocks(head=js_head, css=css) as demo:
|
346 |
+
gr.Markdown('''# The Other Tiger
|
347 |
+
### Generative Recommenders for Exporation of Possible Images
|
348 |
+
|
349 |
+
Explore the latent space using binary feedback.
|
350 |
+
|
351 |
+
[rynmurdock.github.io](https://rynmurdock.github.io/)
|
352 |
+
''', elem_id="description")
|
353 |
+
user_id = gr.State()
|
354 |
+
# calibration videos -- this is a misnomer now :D
|
355 |
+
calibrate_prompts = gr.State( glob.glob('image_init/*') )
|
356 |
+
def l():
|
357 |
+
return None
|
358 |
+
|
359 |
+
with gr.Row(elem_id='output-image'):
|
360 |
+
img = gr.Image(
|
361 |
+
label='Lightning',
|
362 |
+
interactive=False,
|
363 |
+
elem_id="output_im",
|
364 |
+
type='filepath',
|
365 |
+
height=700,
|
366 |
+
width=700,
|
367 |
+
)
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
with gr.Row(equal_height=True):
|
372 |
+
b3 = gr.Button(value='π', interactive=False, elem_id="dislike")
|
373 |
+
|
374 |
+
b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither", visible=False)
|
375 |
+
|
376 |
+
b1 = gr.Button(value='π', interactive=False, elem_id="like")
|
377 |
+
with gr.Row(equal_height=True):
|
378 |
+
b6 = gr.Button(value='π Style', interactive=False, elem_id="dislike like", visible=False)
|
379 |
+
|
380 |
+
b5 = gr.Button(value='π Content', interactive=False, elem_id="like dislike", visible=False)
|
381 |
+
|
382 |
+
b1.click(
|
383 |
+
choose,
|
384 |
+
[img, b1, calibrate_prompts, user_id],
|
385 |
+
[img, calibrate_prompts, ],
|
386 |
+
)
|
387 |
+
b2.click(
|
388 |
+
choose,
|
389 |
+
[img, b2, calibrate_prompts, user_id],
|
390 |
+
[img, calibrate_prompts, ],
|
391 |
+
)
|
392 |
+
b3.click(
|
393 |
+
choose,
|
394 |
+
[img, b3, calibrate_prompts, user_id],
|
395 |
+
[img, calibrate_prompts, ],
|
396 |
+
)
|
397 |
+
b5.click(
|
398 |
+
choose,
|
399 |
+
[img, b5, calibrate_prompts, user_id],
|
400 |
+
[img, calibrate_prompts, ],
|
401 |
+
)
|
402 |
+
b6.click(
|
403 |
+
choose,
|
404 |
+
[img, b6, calibrate_prompts, user_id],
|
405 |
+
[img, calibrate_prompts, ],
|
406 |
+
)
|
407 |
+
with gr.Row():
|
408 |
+
b4 = gr.Button(value='Start')
|
409 |
+
b4.click(start,
|
410 |
+
[b4, calibrate_prompts, user_id],
|
411 |
+
[b1, b2, b3, b4, b5, b6, img, calibrate_prompts, user_id, ]
|
412 |
+
)
|
413 |
+
with gr.Row():
|
414 |
+
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several images and then roam. When your media is generating, you may encounter others'.</ div><br><br><br>
|
415 |
+
|
416 |
+
<br><br>
|
417 |
+
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
|
418 |
+
</ div>''')
|
419 |
+
|
420 |
+
# TODO quiet logging
|
421 |
+
scheduler = BackgroundScheduler()
|
422 |
+
scheduler.add_job(func=background_next_image, trigger="interval", seconds=.2)
|
423 |
+
scheduler.start()
|
424 |
+
|
425 |
+
# TODO shouldn't call this before gradio launch, yeah?
|
426 |
+
@spaces.GPU()
|
427 |
+
def encode_space(x):
|
428 |
+
im = (
|
429 |
+
model.prior_pipe.image_processor(x, return_tensors="pt")
|
430 |
+
.pixel_values[0]
|
431 |
+
.unsqueeze(0)
|
432 |
+
.to(dtype=model.prior_pipe.image_encoder.dtype, device=device)
|
433 |
+
)
|
434 |
+
im_emb = model.prior_pipe.image_encoder(im)["image_embeds"]
|
435 |
+
return im_emb.detach().to('cpu').to(torch.float32)
|
436 |
+
|
437 |
+
# NOTE:
|
438 |
+
# media is moved into a random tmp folder so we need to parse filenames carefully.
|
439 |
+
# do not have any cases where a file name is the same or could be `in` another filename
|
440 |
+
# you also maybe can't use jpegs lmao
|
441 |
+
|
442 |
+
# prep our calibration videos
|
443 |
+
m_calibrate = glob.glob('image_init/*')
|
444 |
+
for im in m_calibrate:
|
445 |
+
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'text', 'gemb', 'from_user_id'])
|
446 |
+
tmp_df['paths'] = [im]
|
447 |
+
image = Image.open(im).convert('RGB')
|
448 |
+
im_emb = encode_space(image)
|
449 |
+
|
450 |
+
tmp_df['embeddings'] = [im_emb.detach().to('cpu')]
|
451 |
+
tmp_df['user:rating'] = [{' ': ' '}]
|
452 |
+
tmp_df['text'] = ['']
|
453 |
+
|
454 |
+
# seems to break things...
|
455 |
+
tmp_df['from_user_id'] = [0]
|
456 |
+
tmp_df['latest_user_to_rate'] = [0]
|
457 |
+
prevs_df = pd.concat((prevs_df, tmp_df))
|
458 |
+
|
459 |
+
glob_idx = 0
|
460 |
+
demo.launch(share=True,)
|