File size: 15,525 Bytes
fa78257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dc3966
fa78257
 
3dc3966
bb01eaa
3dc3966
 
 
fa78257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dc3966
 
fa78257
 
3dc3966
 
 
fa78257
3dc3966
fa78257
3dc3966
 
fa78257
72953cd
fa78257
 
 
 
 
 
 
 
 
 
3dc3966
fa78257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dc3966
fa78257
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# from pathlib import Path
# from typing import List, Optional, Tuple

# import spaces
# import gradio as gr
# import numpy as np
# import torch
# from sudachipy import dictionary
# from sudachipy import tokenizer as sudachi_tokenizer
# from transformers import AutoModelForCausalLM, PreTrainedTokenizer, T5Tokenizer


# model_dir = Path(__file__).parents[0] / "model"
# device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
# tokenizer = T5Tokenizer.from_pretrained(model_dir)
# tokenizer.do_lower_case = True
# trained_model = AutoModelForCausalLM.from_pretrained(model_dir)
# trained_model.to(device)

# # baseline model
# baseline_model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt2-medium")
# baseline_model.to(device)

# sudachi_tokenizer_obj = dictionary.Dictionary().create()
# mode = sudachi_tokenizer.Tokenizer.SplitMode.C


# def sudachi_tokenize(input_text: str) -> List[str]:
#     morphemes = sudachi_tokenizer_obj.tokenize(input_text, mode)
#     return [morpheme.surface() for morpheme in morphemes]


# def calc_offsets(tokens: List[str]) -> List[int]:
#     offsets = [0]
#     for token in tokens:
#         offsets.append(offsets[-1] + len(token))
#     return offsets


# def distribute_surprisals_to_characters(
#     tokens2surprisal: List[Tuple[str, float]]
# ) -> List[Tuple[str, float]]:
#     tokens2surprisal_by_character: List[Tuple[str, float]] = []
#     for token, surprisal in tokens2surprisal:
#         token_len = len(token)
#         for character in token:
#             tokens2surprisal_by_character.append((character, surprisal / token_len))
#     return tokens2surprisal_by_character


# def calculate_surprisals_by_character(
#     input_text: str, model: AutoModelForCausalLM, tokenizer: PreTrainedTokenizer
# ) -> Tuple[float, List[Tuple[str, float]]]:
#     input_tokens = [
#         token.replace("▁", "")
#         for token in tokenizer.tokenize(input_text)
#         if token != "▁"
#     ]
#     input_ids = tokenizer.encode(
#         "<s>" + input_text, add_special_tokens=False, return_tensors="pt"
#     ).to(device)

#     logits = model(input_ids)["logits"].squeeze(0)

#     surprisals = []
#     for i in range(logits.shape[0] - 1):
#         if input_ids[0][i + 1] == 9:
#             continue
#         logit = logits[i]
#         prob = torch.softmax(logit, dim=0)
#         neg_logprob = -torch.log(prob)
#         surprisals.append(neg_logprob[input_ids[0][i + 1]].item())
#     mean_surprisal = np.mean(surprisals)

#     tokens2surprisal: List[Tuple[str, float]] = []
#     for token, surprisal in zip(input_tokens, surprisals):
#         tokens2surprisal.append((token, surprisal))

#     char2surprisal = distribute_surprisals_to_characters(tokens2surprisal)

#     return mean_surprisal, char2surprisal


# def aggregate_surprisals_by_offset(
#     char2surprisal: List[Tuple[str, float]], offsets: List[int]
# ) -> List[Tuple[str, float]]:
#     tokens2surprisal = []
#     for i in range(len(offsets) - 1):
#         start = offsets[i]
#         end = offsets[i + 1]
#         surprisal = sum([surprisal for _, surprisal in char2surprisal[start:end]])
#         token = "".join([char for char, _ in char2surprisal[start:end]])
#         tokens2surprisal.append((token, surprisal))

#     return tokens2surprisal


# def highlight_token(token: str, score: float):
#     if score > 0:
#         html_color = "#%02X%02X%02X" % (
#             255,
#             int(255 * (1 - score)),
#             int(255 * (1 - score)),
#         )
#     else:
#         html_color = "#%02X%02X%02X" % (
#             int(255 * (1 + score)),
#             255,
#             int(255 * (1 + score)),
#         )
#     return '<span style="background-color: {}; color: black">{}</span>'.format(
#         html_color, token
#     )


# def create_highlighted_text(
#     label: str,
#     tokens2scores: List[Tuple[str, float]],
#     mean_surprisal: Optional[float] = None,
# ):
#     if mean_surprisal is None:
#         highlighted_text = "<h2><b>" + label + "</b></h2>"
#     else:
#         highlighted_text = (
#             "<h2><b>" + label + f"</b>(サプライザル平均値: {mean_surprisal:.3f})</h2>"
#         )
#     for token, score in tokens2scores:
#         highlighted_text += highlight_token(token, score)
#     return highlighted_text


# def normalize_surprisals(
#     tokens2surprisal: List[Tuple[str, float]], log_scale: bool = False
# ) -> List[Tuple[str, float]]:
#     if log_scale:
#         surprisals = [np.log(surprisal) for _, surprisal in tokens2surprisal]
#     else:
#         surprisals = [surprisal for _, surprisal in tokens2surprisal]
#     min_surprisal = np.min(surprisals)
#     max_surprisal = np.max(surprisals)
#     surprisals = [
#         (surprisal - min_surprisal) / (max_surprisal - min_surprisal)
#         for surprisal in surprisals
#     ]
#     assert min(surprisals) >= 0
#     assert max(surprisals) <= 1
#     return [
#         (token, surprisal)
#         for (token, _), surprisal in zip(tokens2surprisal, surprisals)
#     ]


# def calculate_surprisal_diff(
#     tokens2surprisal: List[Tuple[str, float]],
#     baseline_tokens2surprisal: List[Tuple[str, float]],
#     scale: float = 100.0,
# ):
#     diff_tokens2surprisal = [
#         (token, (surprisal - baseline_surprisal) * 100)
#         for (token, surprisal), (_, baseline_surprisal) in zip(
#             tokens2surprisal, baseline_tokens2surprisal
#         )
#     ]
#     return diff_tokens2surprisal

# @spaces.GPU
# def main(input_text: str) -> Tuple[str, str, str]:
#     mean_surprisal, char2surprisal = calculate_surprisals_by_character(
#         input_text, trained_model, tokenizer
#     )
#     offsets = calc_offsets(sudachi_tokenize(input_text))
#     tokens2surprisal = aggregate_surprisals_by_offset(char2surprisal, offsets)
#     tokens2surprisal = normalize_surprisals(tokens2surprisal)

#     highlighted_text = create_highlighted_text(
#         "学習後モデル", tokens2surprisal, mean_surprisal
#     )

#     (
#         baseline_mean_surprisal,
#         baseline_char2surprisal,
#     ) = calculate_surprisals_by_character(input_text, baseline_model, tokenizer)
#     baseline_tokens2surprisal = aggregate_surprisals_by_offset(
#         baseline_char2surprisal, offsets
#     )
#     baseline_tokens2surprisal = normalize_surprisals(baseline_tokens2surprisal)
#     baseline_highlighted_text = create_highlighted_text(
#         "学習前モデル", baseline_tokens2surprisal, baseline_mean_surprisal
#     )

#     diff_tokens2surprisal = calculate_surprisal_diff(
#         tokens2surprisal, baseline_tokens2surprisal, 100.0
#     )
#     diff_highlighted_text = create_highlighted_text(
#         "学習前後の差分", diff_tokens2surprisal, None
#     )
#     return (
#         baseline_highlighted_text,
#         highlighted_text,
#         diff_highlighted_text,
#     )


# if __name__ == "__main__":
#     demo = gr.Interface(
#         fn=main,
#         title="文章の読みやすさを自動評価するAI",
#         description="文章を入力すると、読みづらい表現は赤く、読みやすい表現は青くハイライトされて出力されます。",
#         # show_label=True,
#         inputs=gr.Textbox(
#             lines=5,
#             label="文章",
#             placeholder="ここに文章を入力してください。",
#         ),
#         outputs=[
#             gr.HTML(label="学習前モデル", show_label=True),
#             gr.HTML(label="学習後モデル", show_label=True),
#             gr.HTML(label="学習前後の差分", show_label=True),
#         ],
#         examples=[
#             "太郎が二郎を殴った。",
#             "太郎が二郎に殴った。",
#             "サイエンスインパクトラボは、国立研究開発法人科学技術振興機構(JST)の「科学と社会」推進部が行う共創プログラムです。「先端の研究開発を行う研究者」と「社会課題解決に取り組むプレイヤー」が約3ヶ月に渡って共創活動を行います。",
#             "近年、ニューラル言語モデルが自然言語の統語知識をどれほど有しているかを、容認性判断課題を通して検証する研究が行われてきている。しかし、このような言語モデルの統語的評価を行うためのデータセットは、主に英語を中心とした欧米の諸言語を対象に構築されてきた。本研究では、既存のデータセットの問題点を克服しつつ、このようなデータセットが構築されてこなかった日本語を対象とした初めてのデータセットである JCoLA (JapaneseCorpus of Linguistic Acceptability) を構築した上で、それを用いた言語モデルの統語的評価を行った。",
#         ],
#     )

#     demo.launch()


import os
import pickle as pkl
from pathlib import Path
from threading import Thread
from typing import List, Optional, Tuple, Iterator

import spaces
import gradio as gr
import numpy as np
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer


MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Llama-2 7B Chat with Streamable Semantic Uncertainty Probe
This Space demonstrates the Llama-2-7b-chat model with an added semantic uncertainty probe. 
The highlighted text shows the model's uncertainty in real-time, with more intense yellow indicating higher uncertainty.
"""

if torch.cuda.is_available():
    model_id = "meta-llama/Llama-2-7b-chat-hf"
    # TODO load the full model?
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_8bit=True)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False

    # load the probe data
    # TODO load accuracy and SE probe and compare in different tabs
    with open("./model/20240625-131035_demo.pkl", "rb") as f:
        probe_data = pkl.load(f)
    # take the NQ open one
    probe_data = probe_data[-2]
    probe = probe_data['t_bmodel']
    layer_range = probe_data['sep_layer_range']
    acc_probe = probe_data['t_amodel']
    acc_layer_range = probe_data['ap_layer_range']

@spaces.GPU
def generate(
    message: str,
    chat_history: List[Tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        streamer=streamer,
        output_hidden_states=True,
        return_dict_in_generate=True,
    )

    # Generate without threading
    with torch.no_grad():
        outputs = model.generate(**generation_kwargs)
    print(outputs.sequences.shape, input_ids.shape)
    generated_tokens = outputs.sequences[0, input_ids.shape[1]:]
    print("Generated tokens:", generated_tokens, generated_tokens.shape)
    generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
    print("Generated text:", generated_text)
    # hidden states
    hidden = outputs.hidden_states  # list of tensors, one for each token, then (batch size, sequence length, hidden size)
    print(len(hidden)) 
    print(len(hidden[1]))     # layers
    print(hidden[1][0].shape)  # (sequence length, hidden size)
    # stack token embeddings 

    # TODO do this loop on the fly instead of waiting for the whole generation
    highlighted_text = ""
    for i in range(1, len(hidden)):
        token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden[i]])   # (num_layers, hidden_size)
        # print(token_embeddings.shape)
        # probe the model
        # print(token_embeddings.numpy()[layer_range].shape)
        concat_layers = token_embeddings.numpy()[layer_range[0]:layer_range[1]].reshape(-1)  # (num_layers * hidden_size)
        # print(concat_layers.shape)
        # or prob?
        probe_pred = probe.predict_log_proba(concat_layers.reshape(1, -1))[0][1]   # prob of high SE
        # print(probe_pred.shape, probe_pred)
        # decode one token at a time
        output_id = outputs.sequences[0, input_ids.shape[1]+i]
        print(output_id, output_word, probe_pred)
        output_word = tokenizer.decode(output_id)
        new_highlighted_text = highlight_text(output_word, probe_pred)
        highlighted_text += new_highlighted_text
    
        yield highlighted_text

def highlight_text(text: str, uncertainty_score: float) -> str:
    if uncertainty_score > 0:
        html_color = "#%02X%02X%02X" % (
            255,
            int(255 * (1 - uncertainty_score)),
            int(255 * (1 - uncertainty_score)),
        )
    else:
        html_color = "#%02X%02X%02X" % (
            int(255 * (1 + uncertainty_score)),
            255,
            int(255 * (1 + uncertainty_score)),
        )
    return '<span style="background-color: {}; color: black">{}</span>'.format(
        html_color, text
    )
chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["What is the capital of France?"],
        ["Explain the theory of relativity in simple terms."],
        ["Write a short poem about artificial intelligence."]
    ],
    title="Llama-2 7B Chat with Streamable Semantic Uncertainty Probe",
    description=DESCRIPTION,
)

if __name__ == "__main__":
    chat_interface.launch()