File size: 7,861 Bytes
b874271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.\n",
      "Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/shreshth/anaconda3/envs/llm-test/lib/python3.11/site-packages/threadpoolctl.py:1214: RuntimeWarning: \n",
      "Found Intel OpenMP ('libiomp') and LLVM OpenMP ('libomp') loaded at\n",
      "the same time. Both libraries are known to be incompatible and this\n",
      "can cause random crashes or deadlocks on Linux when loaded in the\n",
      "same Python program.\n",
      "Using threadpoolctl may cause crashes or deadlocks. For more\n",
      "information and possible workarounds, please see\n",
      "    https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md\n",
      "\n",
      "  warnings.warn(msg, RuntimeWarning)\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'name': 'nq',\n",
       " 't_bmodel': LogisticRegression(),\n",
       " 't_amodel': LogisticRegression(),\n",
       " 'sep_layer_range': (27, 32),\n",
       " 'ap_layer_range': (17, 22)}"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# test probe loading \n",
    "import pickle as pkl\n",
    "import numpy as np\n",
    "import sklearn \n",
    "from sklearn import linear_model\n",
    "import os\n",
    "os.environ[\"PYTORCH_ENABLE_MPS_FALLBACK\"] = \"1\"\n",
    "\n",
    "# load the probe data\n",
    "with open(\"./model/20240625-131035_demo.pkl\", \"rb\") as f:\n",
    "    probe_data = pkl.load(f)\n",
    "# take the NQ open one\n",
    "probe_data = probe_data[-2]\n",
    "probe_data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "probe = probe_data['t_bmodel']\n",
    "layer_range = probe_data['sep_layer_range']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1c0e30b73cab48069e985203c598a9b0",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/2 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import torch\n",
    "from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer\n",
    "\n",
    "model_id = \"meta-llama/Llama-2-7b-chat-hf\"\n",
    "model = AutoModelForCausalLM.from_pretrained(model_id, device_map=\"cpu\")\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
    "tokenizer.use_default_system_prompt = False"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "tensor([[    1,   518, 25580, 29962,  3532, 14816, 29903,  6778,    13,  3492,\n",
      "           526,   263,  8444, 20255, 29889,    13, 29966,   829, 14816, 29903,\n",
      "          6778,    13,    13,  5816,   338,   278,  7483,   310,  3444, 29973,\n",
      "           518, 29914, 25580, 29962]]) torch.Size([1, 34])\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)\n"
     ]
    }
   ],
   "source": [
    "from threading import Thread\n",
    "\n",
    "system_prompt = \"You are a helpful assistant.\"\n",
    "message = \"what is the capital of France?\"\n",
    "max_new_tokens = 100\n",
    "top_p = 0.9\n",
    "top_k = 50\n",
    "temperature = 0.7\n",
    "repetition_penalty = 1.2\n",
    "\n",
    "conversation = []\n",
    "\n",
    "conversation.append({\"role\": \"system\", \"content\": system_prompt})\n",
    "conversation.append({\"role\": \"user\", \"content\": message})\n",
    "input_ids = tokenizer.apply_chat_template(conversation, return_tensors=\"pt\")\n",
    "input_ids = input_ids.to(model.device)\n",
    "print(input_ids, input_ids.shape)\n",
    "streamer = TextIteratorStreamer(tokenizer, timeout=1000.0, skip_prompt=True, skip_special_tokens=True)\n",
    "generation_kwargs = dict(\n",
    "    input_ids=input_ids,\n",
    "    max_new_tokens=max_new_tokens,\n",
    "    do_sample=True,\n",
    "    top_p=top_p,\n",
    "    top_k=top_k,\n",
    "    temperature=temperature,\n",
    "    repetition_penalty=repetition_penalty,\n",
    "    streamer=streamer,\n",
    "    output_hidden_states=True,\n",
    "    return_dict_in_generate=True,\n",
    ")\n",
    "\n",
    "thread = Thread(target=model.generate, kwargs=generation_kwargs)\n",
    "thread.start()\n",
    "\n",
    "generated_text = \"\"\n",
    "highlighted_text = \"\"\n",
    "\n",
    "for new_text in streamer:\n",
    "    print(new_text)\n",
    "    generated_text += new_text\n",
    "    current_input_ids = tokenizer.encode(generated_text, return_tensors=\"pt\").to(model.device)\n",
    "    print(current_input_ids, current_input_ids.shape)\n",
    "    with torch.no_grad():\n",
    "        outputs = model(current_input_ids, output_hidden_states=True)\n",
    "        print(outputs)\n",
    "        hidden = outputs.hidden_states    \n",
    "        print(hidden.shape)\n",
    "        # Stack second last token embeddings from all layers \n",
    "        # if len(hidden) == 1:  # FIX: runtime error for mistral-7b on bioasq\n",
    "        #     sec_last_input = hidden[0]\n",
    "        # elif ((n_generated - 2) >= len(hidden)):\n",
    "        #     sec_last_input = hidden[-2]\n",
    "        # else:\n",
    "        #     sec_last_input = hidden[n_generated - 2]\n",
    "        # sec_last_token_embedding = torch.stack([layer[:, -1, :].cpu() for layer in sec_last_input])\n",
    "        # print(sec_last_token_embedding.shape)\n",
    "    last_hidden_state = outputs.hidden_states[-1][:, -1, :].cpu().numpy()\n",
    "    print(last_hidden_state.shape)  \n",
    "    # TODO potentially need to only compute uncertainty for the last token in sentence?\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# concat hidden states\n",
    "\n",
    "\n",
    "hidden_states = np.concatenate(np.array(hidden_states)[layer_range], axis=1)\n",
    "# predict with probe\n",
    "pred = probe.predict(hidden_states)\n",
    "print(pred)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llm-test",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}