s-a-malik
test
fa78257
raw
history blame
6.58 kB
import os
import pickle as pkl
from pathlib import Path
from threading import Thread
from typing import List, Optional, Tuple, Iterator
import spaces
import gradio as gr
import numpy as np
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Llama-2 7B Chat with Streamable Semantic Uncertainty Probe
This Space demonstrates the Llama-2-7b-chat model with an added semantic uncertainty probe.
The highlighted text shows the model's uncertainty in real-time, with more intense yellow indicating higher uncertainty.
"""
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-chat-hf"
# TODO load the full model?
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
# load the probe data
# TODO load accuracy and SE probe and compare in different tabs
with open("./model/20240625-131035_demo.pkl", "rb") as f:
probe_data = pkl.load(f)
# take the NQ open one
probe_data = probe_data[-2]
probe = probe_data['t_bmodel']
layer_range = probe_data['sep_layer_range']
acc_probe = probe_data['t_amodel']
acc_layer_range = probe_data['ap_layer_range']
@spaces.GPU
def generate(
message: str,
chat_history: List[Tuple[str, str]],
system_prompt: str,
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
streamer=streamer,
output_hidden_states=True,
return_dict_in_generate=True,
)
# Generate without threading
with torch.no_grad():
outputs = model.generate(**generation_kwargs)
print(outputs.sequences.shape, input_ids.shape)
generated_tokens = outputs.sequences[0, input_ids.shape[1]:]
print("Generated tokens:", generated_tokens, generated_tokens.shape)
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
print("Generated text:", generated_text)
# hidden states
hidden = outputs.hidden_states # list of tensors, one for each token, then (batch size, sequence length, hidden size)
print(len(hidden))
print(len(hidden[1])) # layers
print(hidden[1][0].shape) # (sequence length, hidden size)
# stack token embeddings
# TODO do this loop on the fly instead of waiting for the whole generation
highlighted_text = ""
for i in range(1, len(hidden)):
token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden[i]]) # (num_layers, hidden_size)
# print(token_embeddings.shape)
# probe the model
# print(token_embeddings.numpy()[layer_range].shape)
concat_layers = token_embeddings.numpy()[layer_range[0]:layer_range[1]].reshape(-1) # (num_layers * hidden_size)
# print(concat_layers.shape)
# or prob?
probe_pred = probe.predict_log_proba(concat_layers.reshape(1, -1))[0][1] # prob of high SE
# print(probe_pred.shape, probe_pred)
# decode one token at a time
output_id = outputs.sequences[0, input_ids.shape[1]+i]
print(output_id, output_word, probe_pred)
output_word = tokenizer.decode(output_id)
new_highlighted_text = highlight_text(output_word, probe_pred)
highlighted_text += new_highlighted_text
yield highlighted_text
def highlight_text(text: str, uncertainty_score: float) -> str:
if uncertainty_score > 0:
html_color = "#%02X%02X%02X" % (
255,
int(255 * (1 - uncertainty_score)),
int(255 * (1 - uncertainty_score)),
)
else:
html_color = "#%02X%02X%02X" % (
int(255 * (1 + uncertainty_score)),
255,
int(255 * (1 + uncertainty_score)),
)
return '<span style="background-color: {}; color: black">{}</span>'.format(
html_color, text
)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["What is the capital of France?"],
["Explain the theory of relativity in simple terms."],
["Write a short poem about artificial intelligence."]
],
title="Llama-2 7B Chat with Streamable Semantic Uncertainty Probe",
description=DESCRIPTION,
)
if __name__ == "__main__":
chat_interface.launch()