Spaces:
Sleeping
Sleeping
s-a-malik
commited on
Commit
·
180088d
1
Parent(s):
0120475
basestreamer
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from queue import Queue
|
|
8 |
import spaces
|
9 |
import gradio as gr
|
10 |
import torch
|
11 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer,
|
12 |
|
13 |
|
14 |
MAX_MAX_NEW_TOKENS = 2048
|
@@ -53,19 +53,51 @@ else:
|
|
53 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
54 |
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
self.hidden_states_queue = Queue()
|
|
|
|
|
|
|
64 |
|
65 |
def put(self, value):
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Streamer claude
|
71 |
# def generate(
|
@@ -116,27 +148,56 @@ def generate(
|
|
116 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
117 |
input_ids = input_ids.to(model.device)
|
118 |
|
119 |
-
|
120 |
-
streamer = CustomStreamer(
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
135 |
thread.start()
|
|
|
136 |
se_highlighted_text = ""
|
137 |
acc_highlighted_text = ""
|
138 |
-
for
|
139 |
hidden_states = streamer.hidden_states_queue.get()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
# Semantic Uncertainty Probe
|
141 |
token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden_states]).numpy() # (num_layers, hidden_size)
|
142 |
se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)
|
@@ -146,6 +207,8 @@ def generate(
|
|
146 |
acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
|
147 |
acc_probe_pred = (1 - acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1]) * 2 - 1
|
148 |
|
|
|
|
|
149 |
print(new_text, se_probe_pred, acc_probe_pred)
|
150 |
|
151 |
se_new_highlighted_text = highlight_text(new_text, se_probe_pred)
|
@@ -155,25 +218,9 @@ def generate(
|
|
155 |
|
156 |
yield se_highlighted_text, acc_highlighted_text
|
157 |
|
158 |
-
|
159 |
-
# se_token_embeddings = torch.stack([layer[0, -1, :].cpu() for layer in hidden_states])
|
160 |
-
# se_concat_layers = se_token_embeddings.numpy()[se_layer_range[0]:se_layer_range[1]].reshape(-1)
|
161 |
-
# se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
|
162 |
-
|
163 |
-
# # Accuracy Probe
|
164 |
-
# acc_token_embeddings = torch.stack([layer[0, -1, :].cpu() for layer in hidden_states])
|
165 |
-
# acc_concat_layers = acc_token_embeddings.numpy()[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
|
166 |
-
# acc_probe_pred = acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1] * 2 - 1
|
167 |
-
|
168 |
-
# se_new_highlighted_text = highlight_text(new_text, se_probe_pred)
|
169 |
-
# acc_new_highlighted_text = highlight_text(new_text, acc_probe_pred)
|
170 |
-
|
171 |
-
# se_highlighted_text += se_new_highlighted_text
|
172 |
-
# acc_highlighted_text += acc_new_highlighted_text
|
173 |
-
|
174 |
-
# yield se_highlighted_text, acc_highlighted_text
|
175 |
|
176 |
-
|
177 |
# with torch.no_grad():
|
178 |
# outputs = model.generate(**generation_kwargs)
|
179 |
# generated_tokens = outputs.sequences[0, input_ids.shape[1]:]
|
@@ -206,7 +253,6 @@ def generate(
|
|
206 |
# se_highlighted_text += f" {se_new_highlighted_text}"
|
207 |
# acc_highlighted_text += f" {acc_new_highlighted_text}"
|
208 |
|
209 |
-
# # yield se_highlighted_text, acc_highlighted_text
|
210 |
# return se_highlighted_text, acc_highlighted_text
|
211 |
|
212 |
|
|
|
8 |
import spaces
|
9 |
import gradio as gr
|
10 |
import torch
|
11 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BaseStreamer
|
12 |
|
13 |
|
14 |
MAX_MAX_NEW_TOKENS = 2048
|
|
|
53 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
54 |
|
55 |
|
56 |
+
|
57 |
+
class CustomStreamer(BaseStreamer):
|
58 |
+
def __init__(self, skip_prompt: bool = False, timeout: Optional[float] = None):
|
59 |
+
self.skip_prompt = skip_prompt
|
60 |
+
self.timeout = timeout
|
61 |
+
|
62 |
+
self.token_queue = Queue()
|
63 |
self.hidden_states_queue = Queue()
|
64 |
+
self.stop_signal = None
|
65 |
+
|
66 |
+
self.next_tokens_are_prompt = True
|
67 |
|
68 |
def put(self, value):
|
69 |
+
"""Receives tokens and adds them to the token queue."""
|
70 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
71 |
+
raise ValueError("CustomStreamer only supports batch size 1")
|
72 |
+
elif len(value.shape) > 1:
|
73 |
+
value = value[0]
|
74 |
+
|
75 |
+
if self.skip_prompt and self.next_tokens_are_prompt:
|
76 |
+
self.next_tokens_are_prompt = False
|
77 |
+
return
|
78 |
+
|
79 |
+
for token in value.tolist():
|
80 |
+
self.token_queue.put(token, timeout=self.timeout)
|
81 |
+
|
82 |
+
def put_hidden_states(self, hidden_states):
|
83 |
+
"""Receives hidden states and adds them to the hidden states queue."""
|
84 |
+
self.hidden_states_queue.put(hidden_states, timeout=self.timeout)
|
85 |
+
|
86 |
+
def end(self):
|
87 |
+
"""Signals the end of the stream."""
|
88 |
+
self.next_tokens_are_prompt = True
|
89 |
+
self.token_queue.put(self.stop_signal, timeout=self.timeout)
|
90 |
+
self.hidden_states_queue.put(self.stop_signal, timeout=self.timeout)
|
91 |
+
|
92 |
+
def __iter__(self):
|
93 |
+
return self
|
94 |
+
|
95 |
+
def __next__(self):
|
96 |
+
token = self.token_queue.get(timeout=self.timeout)
|
97 |
+
if token == self.stop_signal:
|
98 |
+
raise StopIteration()
|
99 |
+
else:
|
100 |
+
return token
|
101 |
|
102 |
# Streamer claude
|
103 |
# def generate(
|
|
|
148 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
149 |
input_ids = input_ids.to(model.device)
|
150 |
|
151 |
+
|
152 |
+
streamer = CustomStreamer(skip_prompt=True, timeout=10.0)
|
153 |
+
|
154 |
+
def generate_with_states():
|
155 |
+
with torch.no_grad():
|
156 |
+
model.generate(
|
157 |
+
input_ids=input_ids,
|
158 |
+
max_new_tokens=max_new_tokens,
|
159 |
+
do_sample=True,
|
160 |
+
top_p=top_p,
|
161 |
+
top_k=top_k,
|
162 |
+
temperature=temperature,
|
163 |
+
repetition_penalty=repetition_penalty,
|
164 |
+
output_hidden_states=True,
|
165 |
+
return_dict_in_generate=True,
|
166 |
+
streamer=streamer
|
167 |
+
)
|
168 |
+
|
169 |
+
thread = Thread(target=generate_with_states)
|
170 |
thread.start()
|
171 |
+
|
172 |
se_highlighted_text = ""
|
173 |
acc_highlighted_text = ""
|
174 |
+
for token_id in streamer:
|
175 |
hidden_states = streamer.hidden_states_queue.get()
|
176 |
+
if hidden_states is streamer.stop_signal:
|
177 |
+
break
|
178 |
+
|
179 |
+
# streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
180 |
+
# streamer = CustomStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
181 |
+
# generation_kwargs = dict(
|
182 |
+
# input_ids=input_ids,
|
183 |
+
# max_new_tokens=max_new_tokens,
|
184 |
+
# do_sample=True,
|
185 |
+
# top_p=top_p,
|
186 |
+
# top_k=top_k,
|
187 |
+
# temperature=temperature,
|
188 |
+
# repetition_penalty=repetition_penalty,
|
189 |
+
# streamer=streamer,
|
190 |
+
# output_hidden_states=True,
|
191 |
+
# return_dict_in_generate=True,
|
192 |
+
# )
|
193 |
+
# #### with threading
|
194 |
+
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
195 |
+
# thread.start()
|
196 |
+
# se_highlighted_text = ""
|
197 |
+
# acc_highlighted_text = ""
|
198 |
+
|
199 |
+
# for new_text in streamer:
|
200 |
+
# hidden_states = streamer.hidden_states_queue.get()
|
201 |
# Semantic Uncertainty Probe
|
202 |
token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden_states]).numpy() # (num_layers, hidden_size)
|
203 |
se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)
|
|
|
207 |
acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
|
208 |
acc_probe_pred = (1 - acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1]) * 2 - 1
|
209 |
|
210 |
+
# decode latest token
|
211 |
+
new_test = tokenizer.decode(token_id)
|
212 |
print(new_text, se_probe_pred, acc_probe_pred)
|
213 |
|
214 |
se_new_highlighted_text = highlight_text(new_text, se_probe_pred)
|
|
|
218 |
|
219 |
yield se_highlighted_text, acc_highlighted_text
|
220 |
|
221 |
+
thread.join()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
+
#### Generate without threading
|
224 |
# with torch.no_grad():
|
225 |
# outputs = model.generate(**generation_kwargs)
|
226 |
# generated_tokens = outputs.sequences[0, input_ids.shape[1]:]
|
|
|
253 |
# se_highlighted_text += f" {se_new_highlighted_text}"
|
254 |
# acc_highlighted_text += f" {acc_new_highlighted_text}"
|
255 |
|
|
|
256 |
# return se_highlighted_text, acc_highlighted_text
|
257 |
|
258 |
|