Spaces:
Sleeping
Sleeping
s-a-malik
commited on
Commit
·
8aba6d1
1
Parent(s):
32936b7
add accuracy probe
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import pickle as pkl
|
|
3 |
from pathlib import Path
|
4 |
from threading import Thread
|
5 |
from typing import List, Tuple, Iterator
|
|
|
6 |
|
7 |
import spaces
|
8 |
import gradio as gr
|
@@ -14,11 +15,22 @@ MAX_MAX_NEW_TOKENS = 2048
|
|
14 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
15 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
16 |
|
17 |
-
DESCRIPTION = """
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
"""
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
if torch.cuda.is_available():
|
23 |
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
24 |
# TODO load the full model not the 8bit one?
|
@@ -32,10 +44,91 @@ if torch.cuda.is_available():
|
|
32 |
probe_data = pkl.load(f)
|
33 |
# take the NQ open one
|
34 |
probe_data = probe_data[-2]
|
35 |
-
|
36 |
-
|
37 |
acc_probe = probe_data['t_amodel']
|
38 |
acc_layer_range = probe_data['ap_layer_range']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
@spaces.GPU
|
41 |
def generate(
|
@@ -84,20 +177,31 @@ def generate(
|
|
84 |
hidden = outputs.hidden_states # list of tensors, one for each token, then (batch size, sequence length, hidden size)
|
85 |
|
86 |
# TODO do this loop on the fly instead of waiting for the whole generation
|
87 |
-
|
|
|
88 |
for i in range(1, len(hidden)):
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
output_id = outputs.sequences[0, input_ids.shape[1]+i]
|
95 |
output_word = tokenizer.decode(output_id)
|
96 |
-
print(output_id, output_word,
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
101 |
|
102 |
def highlight_text(text: str, uncertainty_score: float) -> str:
|
103 |
if uncertainty_score > 0:
|
@@ -116,56 +220,100 @@ def highlight_text(text: str, uncertainty_score: float) -> str:
|
|
116 |
html_color, text
|
117 |
)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
chat_interface = gr.ChatInterface(
|
121 |
-
fn=generate,
|
122 |
-
additional_inputs=[
|
123 |
-
gr.Textbox(label="System prompt", lines=6),
|
124 |
-
gr.Slider(
|
125 |
-
label="Max new tokens",
|
126 |
-
minimum=1,
|
127 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
128 |
-
step=1,
|
129 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
130 |
-
),
|
131 |
-
gr.Slider(
|
132 |
-
label="Temperature",
|
133 |
-
minimum=0.1,
|
134 |
-
maximum=4.0,
|
135 |
-
step=0.1,
|
136 |
-
value=0.6,
|
137 |
-
),
|
138 |
-
gr.Slider(
|
139 |
-
label="Top-p (nucleus sampling)",
|
140 |
-
minimum=0.05,
|
141 |
-
maximum=1.0,
|
142 |
-
step=0.05,
|
143 |
-
value=0.9,
|
144 |
-
),
|
145 |
-
gr.Slider(
|
146 |
-
label="Top-k",
|
147 |
-
minimum=1,
|
148 |
-
maximum=1000,
|
149 |
-
step=1,
|
150 |
-
value=50,
|
151 |
-
),
|
152 |
-
gr.Slider(
|
153 |
-
label="Repetition penalty",
|
154 |
-
minimum=1.0,
|
155 |
-
maximum=2.0,
|
156 |
-
step=0.05,
|
157 |
-
value=1.2,
|
158 |
-
),
|
159 |
-
],
|
160 |
-
stop_btn=None,
|
161 |
-
examples=[
|
162 |
-
["What is the capital of France?"],
|
163 |
-
["Explain the theory of relativity in simple terms."],
|
164 |
-
["Write a short poem about artificial intelligence."]
|
165 |
-
],
|
166 |
-
title="Llama-2 7B Chat with Streamable Semantic Uncertainty Probe",
|
167 |
-
description=DESCRIPTION,
|
168 |
-
)
|
169 |
|
170 |
if __name__ == "__main__":
|
171 |
-
|
|
|
3 |
from pathlib import Path
|
4 |
from threading import Thread
|
5 |
from typing import List, Tuple, Iterator
|
6 |
+
from queue import Queue
|
7 |
|
8 |
import spaces
|
9 |
import gradio as gr
|
|
|
15 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
16 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
17 |
|
18 |
+
DESCRIPTION = """
|
19 |
+
<h1>Llama-2 7B Chat with Uncertainty Probes</h1>
|
20 |
+
<p>This Space demonstrates the Llama-2-7b-chat model with a semantic uncertainty probe.</p>
|
21 |
+
<p>The highlighted text shows the model's uncertainty in real-time:</p>
|
22 |
+
<ul>
|
23 |
+
<li><span style="background-color: #00FF00; color: black">Green</span> indicates more certain generations</li>
|
24 |
+
<li><span style="background-color: #FF0000; color: black">Red</span> indicates more uncertain generations</li>
|
25 |
+
</ul>
|
26 |
"""
|
27 |
|
28 |
+
EXAMPLES = [
|
29 |
+
["What is the capital of France?", "You are a helpful assistant.", []],
|
30 |
+
["Explain the theory of relativity in simple terms.", "You are an expert physicist explaining concepts to a layman.", []],
|
31 |
+
["Write a short poem about artificial intelligence.", "You are a creative poet with a interest in technology.", []]
|
32 |
+
]
|
33 |
+
|
34 |
if torch.cuda.is_available():
|
35 |
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
36 |
# TODO load the full model not the 8bit one?
|
|
|
44 |
probe_data = pkl.load(f)
|
45 |
# take the NQ open one
|
46 |
probe_data = probe_data[-2]
|
47 |
+
se_probe = probe_data['t_bmodel']
|
48 |
+
se_layer_range = probe_data['sep_layer_range']
|
49 |
acc_probe = probe_data['t_amodel']
|
50 |
acc_layer_range = probe_data['ap_layer_range']
|
51 |
+
else:
|
52 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
53 |
+
|
54 |
+
|
55 |
+
class CustomStreamer(TextIteratorStreamer):
|
56 |
+
"""
|
57 |
+
Streamer to also store hidden states in a queue.
|
58 |
+
TODO check this works
|
59 |
+
"""
|
60 |
+
def __init__(self, tokenizer, skip_prompt: bool = False, skip_special_tokens: bool = False, **decode_kwargs):
|
61 |
+
super().__init__(tokenizer, skip_prompt, skip_special_tokens, **decode_kwargs)
|
62 |
+
self.hidden_states_queue = Queue()
|
63 |
+
|
64 |
+
def put(self, value):
|
65 |
+
if isinstance(value, dict) and 'hidden_states' in value:
|
66 |
+
self.hidden_states_queue.put(value['hidden_states'])
|
67 |
+
super().put(value)
|
68 |
+
|
69 |
+
# Streamer claude
|
70 |
+
# def generate(
|
71 |
+
# message: str,
|
72 |
+
# system_prompt: str,
|
73 |
+
# chat_history: List[Tuple[str, str]],
|
74 |
+
# max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
|
75 |
+
# temperature: float = 0.6,
|
76 |
+
# top_p: float = 0.9,
|
77 |
+
# top_k: int = 50,
|
78 |
+
# repetition_penalty: float = 1.2,
|
79 |
+
# ) -> Iterator[Tuple[str, str]]:
|
80 |
+
# conversation = []
|
81 |
+
# if system_prompt:
|
82 |
+
# conversation.append({"role": "system", "content": system_prompt})
|
83 |
+
# for user, assistant in chat_history:
|
84 |
+
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
85 |
+
# conversation.append({"role": "user", "content": message})
|
86 |
+
|
87 |
+
# input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
88 |
+
# if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
89 |
+
# input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
90 |
+
# gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
91 |
+
# input_ids = input_ids.to(model.device)
|
92 |
+
|
93 |
+
# streamer = CustomStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
94 |
+
# generation_kwargs = dict(
|
95 |
+
# input_ids=input_ids,
|
96 |
+
# max_new_tokens=max_new_tokens,
|
97 |
+
# do_sample=True,
|
98 |
+
# top_p=top_p,
|
99 |
+
# top_k=top_k,
|
100 |
+
# temperature=temperature,
|
101 |
+
# repetition_penalty=repetition_penalty,
|
102 |
+
# streamer=streamer,
|
103 |
+
# output_hidden_states=True,
|
104 |
+
# return_dict_in_generate=True,
|
105 |
+
# )
|
106 |
+
|
107 |
+
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
108 |
+
# thread.start()
|
109 |
+
|
110 |
+
# se_highlighted_text = ""
|
111 |
+
# acc_highlighted_text = ""
|
112 |
+
# for new_text in streamer:
|
113 |
+
# hidden_states = streamer.hidden_states_queue.get()
|
114 |
+
|
115 |
+
# # Semantic Uncertainty Probe
|
116 |
+
# se_token_embeddings = torch.stack([layer[0, -1, :].cpu() for layer in hidden_states])
|
117 |
+
# se_concat_layers = se_token_embeddings.numpy()[se_layer_range[0]:se_layer_range[1]].reshape(-1)
|
118 |
+
# se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
|
119 |
+
|
120 |
+
# # Accuracy Probe
|
121 |
+
# acc_token_embeddings = torch.stack([layer[0, -1, :].cpu() for layer in hidden_states])
|
122 |
+
# acc_concat_layers = acc_token_embeddings.numpy()[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
|
123 |
+
# acc_probe_pred = acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1] * 2 - 1
|
124 |
+
|
125 |
+
# se_new_highlighted_text = highlight_text(new_text, se_probe_pred)
|
126 |
+
# acc_new_highlighted_text = highlight_text(new_text, acc_probe_pred)
|
127 |
+
|
128 |
+
# se_highlighted_text += se_new_highlighted_text
|
129 |
+
# acc_highlighted_text += acc_new_highlighted_text
|
130 |
+
|
131 |
+
# yield se_highlighted_text, acc_highlighted_text
|
132 |
|
133 |
@spaces.GPU
|
134 |
def generate(
|
|
|
177 |
hidden = outputs.hidden_states # list of tensors, one for each token, then (batch size, sequence length, hidden size)
|
178 |
|
179 |
# TODO do this loop on the fly instead of waiting for the whole generation
|
180 |
+
se_highlighted_text = ""
|
181 |
+
acc_highlighted_text = ""
|
182 |
for i in range(1, len(hidden)):
|
183 |
+
|
184 |
+
# Semantic Uncertainty Probe
|
185 |
+
token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden[i]]).numpy() # (num_layers, hidden_size)
|
186 |
+
se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)
|
187 |
+
se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
|
188 |
+
|
189 |
+
# Accuracy Probe
|
190 |
+
# acc_token_embeddings = torch.stack([layer[0, -1, :].cpu() for layer in hidden_states])
|
191 |
+
acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
|
192 |
+
acc_probe_pred = -1 * acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1] * 2 - 1
|
193 |
+
|
194 |
output_id = outputs.sequences[0, input_ids.shape[1]+i]
|
195 |
output_word = tokenizer.decode(output_id)
|
196 |
+
print(output_id, output_word, se_probe_pred, acc_probe_pred)
|
197 |
+
|
198 |
+
se_new_highlighted_text = highlight_text(output_word, se_probe_pred)
|
199 |
+
acc_new_highlighted_text = highlight_text(output_word, acc_probe_pred)
|
200 |
+
se_highlighted_text += f" {se_new_highlighted_text}"
|
201 |
+
acc_highlighted_text += f" {acc_new_highlighted_text}"
|
202 |
+
|
203 |
+
yield se_highlighted_text, acc_highlighted_text
|
204 |
+
|
205 |
|
206 |
def highlight_text(text: str, uncertainty_score: float) -> str:
|
207 |
if uncertainty_score > 0:
|
|
|
220 |
html_color, text
|
221 |
)
|
222 |
|
223 |
+
with gr.Blocks(title="Llama-2 7B Chat with Dual Probes", css="footer {visibility: hidden}") as demo:
|
224 |
+
gr.HTML(DESCRIPTION)
|
225 |
+
|
226 |
+
with gr.Row():
|
227 |
+
with gr.Column():
|
228 |
+
message = gr.Textbox(label="Message")
|
229 |
+
system_prompt = gr.Textbox(label="System prompt", lines=2)
|
230 |
+
|
231 |
+
with gr.Column():
|
232 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
233 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
234 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
235 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
236 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
237 |
+
|
238 |
+
with gr.Row():
|
239 |
+
generate_btn = gr.Button("Generate")
|
240 |
+
# add spacing between probes and titles for each output
|
241 |
+
with gr.Row():
|
242 |
+
with gr.Column():
|
243 |
+
title = gr.HTML("<h2>Semantic Uncertainty Probe</h2>")
|
244 |
+
se_output = gr.HTML(label="Semantic Uncertainty Probe")
|
245 |
+
with gr.Column():
|
246 |
+
title = gr.HTML("<h2>Accuracy Probe</h2>")
|
247 |
+
acc_output = gr.HTML(label="Accuracy Probe")
|
248 |
+
|
249 |
+
chat_history = gr.State([])
|
250 |
+
|
251 |
+
# gr.Examples(
|
252 |
+
# examples=EXAMPLES,
|
253 |
+
# inputs=[message, system_prompt, chat_history],
|
254 |
+
# outputs=[se_output, acc_output],
|
255 |
+
# fn=generate,
|
256 |
+
# )
|
257 |
+
|
258 |
+
generate_btn.click(
|
259 |
+
generate,
|
260 |
+
inputs=[message, system_prompt, chat_history, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
261 |
+
outputs=[se_output, acc_output]
|
262 |
+
)
|
263 |
+
|
264 |
+
# chat_interface = gr.ChatInterface(
|
265 |
+
# fn=generate,
|
266 |
+
# additional_inputs=[
|
267 |
+
# gr.Textbox(label="System prompt", lines=6),
|
268 |
+
# gr.Slider(
|
269 |
+
# label="Max new tokens",
|
270 |
+
# minimum=1,
|
271 |
+
# maximum=MAX_MAX_NEW_TOKENS,
|
272 |
+
# step=1,
|
273 |
+
# value=DEFAULT_MAX_NEW_TOKENS,
|
274 |
+
# ),
|
275 |
+
# gr.Slider(
|
276 |
+
# label="Temperature",
|
277 |
+
# minimum=0.1,
|
278 |
+
# maximum=4.0,
|
279 |
+
# step=0.1,
|
280 |
+
# value=0.6,
|
281 |
+
# ),
|
282 |
+
# gr.Slider(
|
283 |
+
# label="Top-p (nucleus sampling)",
|
284 |
+
# minimum=0.05,
|
285 |
+
# maximum=1.0,
|
286 |
+
# step=0.05,
|
287 |
+
# value=0.9,
|
288 |
+
# ),
|
289 |
+
# gr.Slider(
|
290 |
+
# label="Top-k",
|
291 |
+
# minimum=1,
|
292 |
+
# maximum=1000,
|
293 |
+
# step=1,
|
294 |
+
# value=50,
|
295 |
+
# ),
|
296 |
+
# gr.Slider(
|
297 |
+
# label="Repetition penalty",
|
298 |
+
# minimum=1.0,
|
299 |
+
# maximum=2.0,
|
300 |
+
# step=0.05,
|
301 |
+
# value=1.2,
|
302 |
+
# ),
|
303 |
+
# ],
|
304 |
+
# stop_btn=None,
|
305 |
+
# examples=[
|
306 |
+
# ["What is the capital of France?"],
|
307 |
+
# ["Who landed on the moon?"],
|
308 |
+
# ["Who is Yarin Gal?"]
|
309 |
+
# ],
|
310 |
+
# title="Llama-2 7B Chat with Streamable Semantic Uncertainty Probe",
|
311 |
+
# description=DESCRIPTION,
|
312 |
+
# )
|
313 |
+
|
314 |
+
# if __name__ == "__main__":
|
315 |
+
# chat_interface.launch()
|
316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
if __name__ == "__main__":
|
319 |
+
demo.launch()
|