import os import pickle as pkl from pathlib import Path from threading import Thread from typing import List, Tuple, Iterator, Optional from queue import Queue import spaces import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.streamers import BaseStreamer MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """
This Space demonstrates the Llama-2-7b-chat model with a semantic uncertainty probe.
The highlighted text shows the model's uncertainty in real-time:
Running on CPU 🥶 This demo does not work on CPU.
" @spaces.GPU def generate( message: str, system_prompt: str, max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) # streamer = CustomStreamer(skip_prompt=True, timeout=10.0) # def generate_with_states(): # with torch.no_grad(): # model.generate( # input_ids=input_ids, # max_new_tokens=max_new_tokens, # do_sample=True, # top_p=top_p, # top_k=top_k, # temperature=temperature, # repetition_penalty=repetition_penalty, # output_hidden_states=True, # return_dict_in_generate=True, # streamer=streamer # ) # thread = Thread(target=generate_with_states) # thread.start() # se_highlighted_text = "" # acc_highlighted_text = "" # for token_id in streamer: # print # hidden_states = streamer.hidden_states_queue.get() # if hidden_states is streamer.stop_signal: # break # # Semantic Uncertainty Probe # token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden_states]).numpy() # (num_layers, hidden_size) # se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1) # se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1 # # Accuracy Probe # acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1) # acc_probe_pred = (1 - acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1]) * 2 - 1 # # decode latest token # new_text = tokenizer.decode(token_id) # print(new_text, se_probe_pred, acc_probe_pred) # se_new_highlighted_text = highlight_text(new_text, se_probe_pred) # acc_new_highlighted_text = highlight_text(new_text, acc_probe_pred) # se_highlighted_text += f" {se_new_highlighted_text}" # acc_highlighted_text += f" {acc_new_highlighted_text}" # yield se_highlighted_text, acc_highlighted_text #### Generate without threading generation_kwargs = dict( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty, streamer=streamer, output_hidden_states=True, return_dict_in_generate=True, ) with torch.no_grad(): outputs = model.generate(**generation_kwargs) generated_tokens = outputs.sequences[0, input_ids.shape[1]:] generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) print(generated_text) # hidden states hidden = outputs.hidden_states #Â list of tensors, one for each token, then (batch size, sequence length, hidden size) se_highlighted_text = "" acc_highlighted_text = "" for i in range(1, len(hidden)): # Semantic Uncertainty Probe token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden[i]]).numpy() # (num_layers, hidden_size) se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1) se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1 # Accuracy Probe acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1) acc_probe_pred = (1 - acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1]) * 2 - 1 output_id = outputs.sequences[0, input_ids.shape[1]+i] output_word = tokenizer.decode(output_id) print(output_id, output_word, se_probe_pred, acc_probe_pred) se_new_highlighted_text = highlight_text(output_word, se_probe_pred) acc_new_highlighted_text = highlight_text(output_word, acc_probe_pred) se_highlighted_text += f" {se_new_highlighted_text}" acc_highlighted_text += f" {acc_new_highlighted_text}" return se_highlighted_text, acc_highlighted_text def highlight_text(text: str, uncertainty_score: float) -> str: if uncertainty_score > 0: html_color = "#%02X%02X%02X" % ( 255, int(255 * (1 - uncertainty_score)), int(255 * (1 - uncertainty_score)), ) else: html_color = "#%02X%02X%02X" % ( int(255 * (1 + uncertainty_score)), 255, int(255 * (1 + uncertainty_score)), ) return '{}'.format( html_color, text ) with gr.Blocks(title="Llama-2 7B Chat with Dual Probes", css="footer {visibility: hidden}") as demo: gr.HTML(DESCRIPTION) with gr.Row(): with gr.Column(): message = gr.Textbox(label="Message") system_prompt = gr.Textbox(label="System prompt", lines=2) with gr.Column(): max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) temperature = gr.Slider(label="Temperature", minimum=0.01, maximum=2.0, step=0.1, value=0.01) top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) with gr.Row(): generate_btn = gr.Button("Generate") # Add spacing between probes gr.HTML("