import os import pickle as pkl from pathlib import Path from threading import Thread from typing import List, Tuple, Iterator, Optional from queue import Queue import spaces import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer # TODO Sentence level highlighting instead (prediction after every word is not what it was trained on). Also solves token-level highlighting issues. # TODO log prob output scaling highlighting instead? # TODO make it look nicer # TODO better examples. # TODO streaming output (need custom generation function because of probes) # TODO add options to switch between models, SLT/TBG, layers? # TODO full semantic entropy calculation MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """
This Space demonstrates the Llama-2-7b-chat model with a semantic uncertainty probe.
This demo is based on our paper: "Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs" by Jannik Kossen*, Jiatong Han*, Muhammed Razzak*, Lisa Schut, Shreshth Malik and Yarin Gal.
The highlighted text shows the model's uncertainty in real-time:
The demo compares the model's uncertainty with two different probes:
Please see our paper for more details.
""" EXAMPLES = [ ["What is the capital of France?", ""], ["Who landed on the moon?", ""], ["Who is Yarin Gal?", ""], ["Explain the theory of relativity in simple terms.", ""], ] if torch.cuda.is_available(): model_id = "meta-llama/Llama-2-7b-chat-hf" # TODO load the full model not the 8bit one? model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False # load the probe data with open("./model/20240625-131035_demo.pkl", "rb") as f: probe_data = pkl.load(f) # take the NQ open one probe_data = probe_data[-2] se_probe = probe_data['t_bmodel'] se_layer_range = probe_data['sep_layer_range'] acc_probe = probe_data['t_amodel'] acc_layer_range = probe_data['ap_layer_range'] else: DESCRIPTION += "\nRunning on CPU 🥶 This demo does not work on CPU.
" @spaces.GPU def generate( message: str, system_prompt: str, max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Tuple[str, str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) #### Generate without threading generation_kwargs = dict( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty, output_hidden_states=True, return_dict_in_generate=True, ) with torch.no_grad(): outputs = model.generate(**generation_kwargs) generated_tokens = outputs.sequences[0, input_ids.shape[1]:] generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) print(generated_text) # hidden states hidden = outputs.hidden_states # list of tensors, one for each token, then (batch size, sequence length, hidden size) se_highlighted_text = "" acc_highlighted_text = "" # skip the first hidden state as it is the prompt for i in range(1, len(hidden)): # Semantic Uncertainty Probe token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden[i]]).numpy() # (num_layers, hidden_size) se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1) se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1 # Accuracy Probe acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1) acc_probe_pred = (1 - acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1]) * 2 - 1 output_id = outputs.sequences[0, input_ids.shape[1]+i] output_word = tokenizer.decode(output_id) print(output_id, output_word, se_probe_pred, acc_probe_pred) se_new_highlighted_text = highlight_text(output_word, se_probe_pred) acc_new_highlighted_text = highlight_text(output_word, acc_probe_pred) se_highlighted_text += f" {se_new_highlighted_text}" acc_highlighted_text += f" {acc_new_highlighted_text}" return se_highlighted_text, acc_highlighted_text def highlight_text(text: str, uncertainty_score: float) -> str: if uncertainty_score > 0: html_color = "#%02X%02X%02X" % ( 255, int(255 * (1 - uncertainty_score)), int(255 * (1 - uncertainty_score)), ) else: html_color = "#%02X%02X%02X" % ( int(255 * (1 + uncertainty_score)), 255, int(255 * (1 + uncertainty_score)), ) return '{}'.format( html_color, text ) with gr.Blocks(title="Llama-2 7B Chat with Dual Probes", css="footer {visibility: hidden}") as demo: gr.HTML(DESCRIPTION) with gr.Row(): with gr.Column(): message = gr.Textbox(label="Message") system_prompt = gr.Textbox(label="System prompt", lines=2) with gr.Column(): max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) temperature = gr.Slider(label="Temperature", minimum=0.01, maximum=2.0, step=0.1, value=0.01) top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) with gr.Row(): generate_btn = gr.Button("Generate") # Add spacing between probes gr.HTML("