# Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("snunlp/KR-FinBert-SC") model = AutoModelForSequenceClassification.from_pretrained("snunlp/KR-FinBert-SC") import os import tensorflow as tf from absl import logging # 환경 변수 설정 os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # oneDNN 최적화 비활성화 # 로그 초기화 logging.set_verbosity(logging.INFO) logging.use_absl_handler() # GPU 설정 gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) print("GPU 메모리 증가 허용 설정 완료") except RuntimeError as e: print(f"GPU 설정 오류: {e}") # TensorFlow 및 시스템 정보 확인 print("TensorFlow 버전:", tf.__version__) print("사용 가능한 장치:", tf.config.list_physical_devices()) import os import tensorflow as tf # oneDNN 최적화 비활성화 os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # GPU 비활성화 (CUDA 문제 해결 시) os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # TensorFlow GPU 메모리 설정 gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) print("GPU 메모리 증가 허용 설정 완료") except RuntimeError as e: print(f"GPU 설정 오류: {e}") # TensorFlow 실행 확인 print("TensorFlow 버전:", tf.__version__) print("사용 가능한 장치:", tf.config.list_physical_devices()) # Base image FROM python:3.10-slim # Install Python packages RUN pip install --no-cache-dir pip==22.3.1 \ && pip install --no-cache-dir datasets "huggingface-hub>=0.19" \ "hf-transfer>=0.1.4" "protobuf<4" "click<8.1" "pydantic~=1.0" # Install system packages RUN apt-get update && apt-get install -y \ git git-lfs ffmpeg libsm6 libxext6 cmake rsync libgl1-mesa-glx \ && rm -rf /var/lib/apt/lists/* # Work directory WORKDIR /home/user/app # Copy requirements and install additional Python packages COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt # Copy source code COPY . . # Set default command CMD ["streamlit", "run", "app.py"] import streamlit as st st.title("Hello, Streamlit!") st.write("This is a sample Streamlit app.")