File size: 2,413 Bytes
1c0e302
075341e
1c0e302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075341e
1c0e302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ce66c2
1c0e302
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import pathlib
import gradio as gr
import transformers
from transformers import AutoTokenizer
from transformers import ModelForCausalLM 
from transformers import GenerationConfig
from typing import List, Dict, Union
from typing import Any, TypeVar

Pathable = Union[str, pathlib.Path]

def load_model(name: str) -> Any:
    return ModelForCausalLM.from_pretrained(name)

def load_tokenizer(name: str) -> Any:
    return AutoTokenizer.from_pretrained(name)

def create_generator():
    return GenerationConfig(
    temperature=1.0,
    top_p=0.75,
    num_beams=4,
)
    
def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:"""




def evaluate(instruction, input=None):
    prompt = generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].cuda()
    generation_output = model.generate(
        input_ids=input_ids,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True,
        max_new_tokens=256
    )
    for s in generation_output.sequences:
        output = tokenizer.decode(s)
        print("Response:", output.split("### Response:")[1].strip())


def inference(text):
    output = evaluate(instruction = instruction, input = input)
    return output

io = gr.Interface(
    inference, 
    gr.Textbox(
        lines = 3, max_lines = 10, 
        placeholder = "Add question here", 
        interactive = True, 
        show_label = False
    ), 
    gr.Textbox(
        lines = 3, 
        max_lines = 25, 
        placeholder = "add context here", 
        interactive = True, 
        show_label  = False
    ), 
    outputs =[
    gr.Textbox(lines = 2, label = 'Pythia410m output', interactive = False)
    ], 
    title = title, 
    description = description, 
    article = article, 
    examples = examples, 
    cache_examples = False, 
)
io.launch()


#gr.Interface.load("models/s3nh/pythia-410m-70k-steps-self-instruct-polish").launch()