|
import pathlib |
|
import gradio as gr |
|
import transformers |
|
from transformers import AutoTokenizer |
|
from transformers import AutoModelForCausalLM |
|
from transformers import GenerationConfig |
|
from typing import List, Dict, Union |
|
from typing import Any, TypeVar |
|
|
|
Pathable = Union[str, pathlib.Path] |
|
|
|
def load_model(name: str) -> Any: |
|
return AutoModelForCausalLM.from_pretrained(name) |
|
|
|
def load_tokenizer(name: str) -> Any: |
|
return AutoTokenizer.from_pretrained(name) |
|
|
|
def create_generator(): |
|
return GenerationConfig( |
|
temperature=1.0, |
|
top_p=0.75, |
|
num_beams=4, |
|
) |
|
|
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{instruction} |
|
|
|
### Input: |
|
{input} |
|
|
|
### Response:""" |
|
else: |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{instruction} |
|
|
|
### Response:""" |
|
|
|
model= load_model(name = 's3nh/pythia-410m-70k-steps-self-instruct-polish') |
|
tokenizer = load_tokenizer(name = 's3nh/pythia-410m-70k-steps-self-instruct-polish') |
|
generation_config = create_generator() |
|
|
|
|
|
def evaluate(instruction, input=None): |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"] |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=256 |
|
) |
|
result = [] |
|
for s in generation_output.sequences: |
|
output = tokenizer.decode(s) |
|
results.append( output.split("### Response:")[1].strip()) |
|
return ' '.join(el for el in results) |
|
|
|
def inference(text, input): |
|
output = evaluate(instruction = text, input = input) |
|
return output |
|
|
|
io = gr.Interface( |
|
inference, |
|
inputs = [gr.Textbox( |
|
lines = 3, |
|
max_lines = 10, |
|
placeholder = "Add question here", |
|
interactive = True, |
|
show_label = False |
|
), |
|
gr.Textbox( |
|
lines = 3, |
|
max_lines = 10, |
|
placeholder = "Add context here", |
|
interactive = True, |
|
show_label = False |
|
)], |
|
outputs = [gr.Textbox(lines = 1, label = 'Pythia410m', interactive = False)], |
|
cache_examples = False, |
|
) |
|
io.launch() |