Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,95 @@
|
|
1 |
-
import pathlib
|
2 |
import gradio as gr
|
3 |
-
import transformers
|
4 |
-
from transformers import AutoTokenizer
|
5 |
-
from transformers import ModelForCausalLM
|
6 |
-
from transformers import GenerationConfig
|
7 |
-
from typing import List, Dict, Union
|
8 |
-
from typing import Any, TypeVar
|
9 |
-
|
10 |
-
Pathable = Union[str, pathlib.Path]
|
11 |
-
|
12 |
-
def load_model(name: str) -> Any:
|
13 |
-
|
14 |
-
|
15 |
-
def load_tokenizer(name: str) -> Any:
|
16 |
-
|
17 |
-
|
18 |
-
def create_generator():
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
)
|
24 |
|
25 |
-
def generate_prompt(instruction, input=None):
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
### Instruction:
|
30 |
-
{instruction}
|
31 |
-
|
32 |
-
### Input:
|
33 |
-
{input}
|
34 |
-
|
35 |
-
### Response:"""
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
### Instruction:
|
40 |
-
{instruction}
|
41 |
-
|
42 |
-
### Response:"""
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
def evaluate(instruction, input=None):
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
def inference(text):
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
io = gr.Interface(
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
)
|
92 |
-
io.launch()
|
|
|
|
|
|
|
|
1 |
+
# import pathlib
|
2 |
import gradio as gr
|
3 |
+
# import transformers
|
4 |
+
# from transformers import AutoTokenizer
|
5 |
+
# from transformers import ModelForCausalLM
|
6 |
+
# from transformers import GenerationConfig
|
7 |
+
# from typing import List, Dict, Union
|
8 |
+
# from typing import Any, TypeVar
|
9 |
+
|
10 |
+
# Pathable = Union[str, pathlib.Path]
|
11 |
+
|
12 |
+
# def load_model(name: str) -> Any:
|
13 |
+
# return ModelForCausalLM.from_pretrained(name)
|
14 |
+
|
15 |
+
# def load_tokenizer(name: str) -> Any:
|
16 |
+
# return AutoTokenizer.from_pretrained(name)
|
17 |
+
|
18 |
+
# def create_generator():
|
19 |
+
# return GenerationConfig(
|
20 |
+
# temperature=1.0,
|
21 |
+
# top_p=0.75,
|
22 |
+
# num_beams=4,
|
23 |
+
# )
|
24 |
|
25 |
+
# def generate_prompt(instruction, input=None):
|
26 |
+
# if input:
|
27 |
+
# return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
28 |
+
|
29 |
+
# ### Instruction:
|
30 |
+
# {instruction}
|
31 |
+
|
32 |
+
# ### Input:
|
33 |
+
# {input}
|
34 |
+
|
35 |
+
# ### Response:"""
|
36 |
+
# else:
|
37 |
+
# return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
38 |
+
|
39 |
+
# ### Instruction:
|
40 |
+
# {instruction}
|
41 |
+
|
42 |
+
# ### Response:"""
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
# def evaluate(instruction, input=None):
|
48 |
+
# prompt = generate_prompt(instruction, input)
|
49 |
+
# inputs = tokenizer(prompt, return_tensors="pt")
|
50 |
+
# input_ids = inputs["input_ids"].cuda()
|
51 |
+
# generation_output = model.generate(
|
52 |
+
# input_ids=input_ids,
|
53 |
+
# generation_config=generation_config,
|
54 |
+
# return_dict_in_generate=True,
|
55 |
+
# output_scores=True,
|
56 |
+
# max_new_tokens=256
|
57 |
+
# )
|
58 |
+
# for s in generation_output.sequences:
|
59 |
+
# output = tokenizer.decode(s)
|
60 |
+
# print("Response:", output.split("### Response:")[1].strip())
|
61 |
+
|
62 |
+
|
63 |
+
# def inference(text):
|
64 |
+
# output = evaluate(instruction = instruction, input = input)
|
65 |
+
# return output
|
66 |
+
|
67 |
+
# io = gr.Interface(
|
68 |
+
# inference,
|
69 |
+
# gr.Textbox(
|
70 |
+
# lines = 3, max_lines = 10,
|
71 |
+
# placeholder = "Add question here",
|
72 |
+
# interactive = True,
|
73 |
+
# show_label = False
|
74 |
+
# ),
|
75 |
+
# gr.Textbox(
|
76 |
+
# lines = 3,
|
77 |
+
# max_lines = 25,
|
78 |
+
# placeholder = "add context here",
|
79 |
+
# interactive = True,
|
80 |
+
# show_label = False
|
81 |
+
# ),
|
82 |
+
# outputs =[
|
83 |
+
# gr.Textbox(lines = 2, label = 'Pythia410m output', interactive = False)
|
84 |
+
# ]
|
85 |
+
# ),
|
86 |
+
# title = title,
|
87 |
+
# description = description,
|
88 |
+
# article = article,
|
89 |
+
# examples = examples,
|
90 |
+
# cache_examples = False,
|
91 |
+
# )
|
92 |
+
# io.launch()
|
93 |
+
|
94 |
+
|
95 |
+
gr.Interface.load("models/s3nh/pythia-410m-70k-steps-self-instruct-polish").launch()
|