s3nh's picture
Update app.py
39b04e7
import os
import platform
import random
import time
from dataclasses import asdict, dataclass
from pathlib import Path
import gradio as gr
import psutil
from about_time import about_time
from ctransformers import AutoModelForCausalLM
from dl_hf_model import dl_hf_model
from loguru import logger
URL = "https://huggingface.co/s3nh/chinese-alpaca-2-7b-GGML/blob/main/chinese-alpaca-2-7b.ggmlv3.q5_1.bin" # 4.05G
_ = (
"golay" in platform.node()
or "okteto" in platform.node()
or Path("/kaggle").exists()
# or psutil.cpu_count(logical=False) < 4
or 1 # run 7b in hf
)
if _:
url = "https://huggingface.co/s3nh/chinese-alpaca-2-7b-GGML/blob/main/chinese-alpaca-2-7b.ggmlv3.q5_1.bin" # 2.87G
prompt_template = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction: {user_prompt}
### Response:
"""
prompt_template = """System: You are a helpful,
respectful and honest assistant. Always answer as
helpfully as possible, while being safe. Your answers
should not include any harmful, unethical, racist,
sexist, toxic, dangerous, or illegal content. Please
ensure that your responses are socially unbiased and
positive in nature. If a question does not make any
sense, or is not factually coherent, explain why instead
of answering something not correct. If you don't know
the answer to a question, please don't share false
information.
User: {prompt}
Assistant: """
prompt_template = """System: You are a helpful assistant.
User: {prompt}
Assistant: """
prompt_template = """Question: {question}
Answer: Let's work this out in a step by step way to be sure we have the right answer."""
prompt_template = """[INST] <>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible assistant. Think step by step.
<>
What NFL team won the Super Bowl in the year Justin Bieber was born?
[/INST]"""
prompt_template = """[INST] <<SYS>>
You are an unhelpful assistant. Always answer as helpfully as possible. Think step by step. <</SYS>>
{question} [/INST]
"""
prompt_template = """[INST] <<SYS>>
You are a helpful assistant.
<</SYS>>
{question} [/INST]
"""
prompt_template = """### HUMAN:
{question}
### RESPONSE:"""
prompt_template = """<|prompt|>:{question}</s>
<|answer|>:"""
prompt_template = """SYSTEM:
USER: {question}
ASSISTANT: """
_ = [elm for elm in prompt_template.splitlines() if elm.strip()]
stop_string = [elm.split(":")[0] + ":" for elm in _][-2]
logger.debug(f"{stop_string=} not used")
_ = psutil.cpu_count(logical=False) - 1
cpu_count: int = int(_) if _ else 1
logger.debug(f"{cpu_count=}")
LLM = None
try:
model_loc, file_size = dl_hf_model(url)
except Exception as exc_:
logger.error(exc_)
raise SystemExit(1) from exc_
LLM = AutoModelForCausalLM.from_pretrained(
model_loc,
model_type="llama",
)
logger.info(f"done load llm {model_loc=} {file_size=}G")
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset()
logger.warning("Windows, cant run time.tzset()")
except Exception:
logger.warning("Windows, cant run time.tzset()")
@dataclass
class GenerationConfig:
temperature: float = 0.7
top_k: int = 50
top_p: float = 0.9
repetition_penalty: float = 1.0
max_new_tokens: int = 512
seed: int = 42
reset: bool = False
stream: bool = True
# threads: int = cpu_count
# stop: list[str] = field(default_factory=lambda: [stop_string])
def generate(
question: str,
llm=LLM,
config: GenerationConfig = GenerationConfig(),
):
"""Run model inference, will return a Generator if streaming is true."""
prompt = prompt_template.format(question=question)
return llm(
prompt,
**asdict(config),
)
logger.debug(f"{asdict(GenerationConfig())=}")
def user(user_message, history):
history.append([user_message, None])
return user_message, history
def user1(user_message, history):
history.append([user_message, None])
return "", history
def bot_(history):
user_message = history[-1][0]
resp = random.choice(["How are you?", "I love you", "I'm very hungry"])
bot_message = user_message + ": " + resp
history[-1][1] = ""
for character in bot_message:
history[-1][1] += character
time.sleep(0.02)
yield history
history[-1][1] = resp
yield history
def bot(history):
user_message = history[-1][0]
response = []
logger.debug(f"{user_message=}")
with about_time() as atime:
flag = 1
prefix = ""
then = time.time()
logger.debug("about to generate")
config = GenerationConfig(reset=True)
for elm in generate(user_message, config=config):
if flag == 1:
logger.debug("in the loop")
prefix = f"({time.time() - then:.2f}s) "
flag = 0
print(prefix, end="", flush=True)
logger.debug(f"{prefix=}")
print(elm, end="", flush=True)
response.append(elm)
history[-1][1] = prefix + "".join(response)
yield history
_ = (
f"(time elapsed: {atime.duration_human}, "
f"{atime.duration/len(''.join(response)):.2f}s/char)"
)
history[-1][1] = "".join(response) + f"\n{_}"
yield history
def predict_api(prompt):
logger.debug(f"{prompt=}")
try:
# user_prompt = prompt
config = GenerationConfig(
temperature=0.2,
top_k=10,
top_p=0.9,
repetition_penalty=1.0,
max_new_tokens=512, # adjust as needed
seed=42,
reset=True,
stream=False,
)
response = generate(
prompt,
config=config,
)
logger.debug(f"api: {response=}")
except Exception as exc:
logger.error(exc)
response = f"{exc=}"
return response
css = """
.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}
.disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;}
.xsmall {font-size: x-small;}
"""
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples_list = [
["> 你能不能详细介绍一下怎么做披萨? 制作披萨的步骤大致如下:"],
["你推荐我买最新款的iPhone吗?"],
["你是一个资深导游,你能介绍一下中国的首都吗?"],
["你好,我们聊聊音乐吧"],
]
logger.info("start block")
with gr.Blocks(
title=f"{Path(model_loc).name}",
theme=gr.themes.Soft(text_size="sm", spacing_size="sm"),
css=css,
) as block:
# buff_var = gr.State("")
with gr.Accordion("🎈 Info", open=False):
# gr.HTML(
# """<center><a href="https://huggingface.co/spaces/mikeee/mpt-30b-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate"></a> and spin a CPU UPGRADE to avoid the queue</center>"""
# )
gr.Markdown(
f"""<h5><center>{Path(model_loc).name}</center></h4>
Most examples are meant for another model.
You probably should try to test
some related prompts.""",
elem_classes="xsmall",
)
# chatbot = gr.Chatbot().style(height=700) # 500
chatbot = gr.Chatbot(height=500)
# buff = gr.Textbox(show_label=False, visible=True)
with gr.Row():
with gr.Column(scale=5):
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Ask me anything (press Shift+Enter or click Submit to send)",
show_label=False,
# container=False,
lines=6,
max_lines=30,
show_copy_button=True,
# ).style(container=False)
)
with gr.Column(scale=1, min_width=50):
with gr.Row():
submit = gr.Button("Submit", elem_classes="xsmall")
stop = gr.Button("Stop", visible=True)
clear = gr.Button("Clear History", visible=True)
with gr.Row(visible=False):
with gr.Accordion("Advanced Options:", open=False):
with gr.Row():
with gr.Column(scale=2):
system = gr.Textbox(
label="System Prompt",
value=prompt_template,
show_label=False,
container=False,
# ).style(container=False)
)
with gr.Column():
with gr.Row():
change = gr.Button("Change System Prompt")
reset = gr.Button("Reset System Prompt")
with gr.Accordion("Example Inputs", open=True):
examples = gr.Examples(
examples=examples_list,
inputs=[msg],
examples_per_page=40,
)
# with gr.Row():
with gr.Accordion("Disclaimer", open=True):
_ = Path(model_loc).name
gr.Markdown(
"Disclaimer: I AM NOT RESPONSIBLE FOR ANY PROMPT PROVIDED BY USER AND PROMPT RETURNED FROM THE MODEL. THIS APP SHOULD BE USED FOR EDUCATIONAL PURPOSE"
"WITHOUT ANY OFFENSIVE, AGGRESIVE INTENTS. {_} can produce factually incorrect output, and should not be relied on to produce "
f"factually accurate information. {_} was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
msg_submit_event = msg.submit(
# fn=conversation.user_turn,
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
# api_name=None,
).then(bot, chatbot, chatbot, queue=True)
submit_click_event = submit.click(
# fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg
fn=user1, # clear msg
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
# queue=False,
show_progress="full",
# api_name=None,
).then(bot, chatbot, chatbot, queue=True)
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[msg_submit_event, submit_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
input_text = gr.Text()
api_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
api_btn.click(
predict_api,
input_text,
out_text,
api_name="api",
)
# block.load(update_buff, [], buff, every=1)
# block.load(update_buff, [buff_var], [buff_var, buff], every=1)
# concurrency_count=5, max_size=20
# max_size=36, concurrency_count=14
# CPU cpu_count=2 16G, model 7G
# CPU UPGRADE cpu_count=8 32G, model 7G
# does not work
_ = """
# _ = int(psutil.virtual_memory().total / 10**9 // file_size - 1)
# concurrency_count = max(_, 1)
if psutil.cpu_count(logical=False) >= 8:
# concurrency_count = max(int(32 / file_size) - 1, 1)
else:
# concurrency_count = max(int(16 / file_size) - 1, 1)
# """
concurrency_count = 1
logger.info(f"{concurrency_count=}")
block.queue(concurrency_count=concurrency_count, max_size=5).launch(debug=True)