saadob12's picture
Update app.py
8cd9729
raw
history blame
2.7 kB
import streamlit as st
import torch
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
class preProcess:
def __init__(self, filename, titlename):
self.filename = filename
self.title = titlename + '\n'
def read_data(self):
df = pd.read_csv(self.filename)
return df
def check_columns(self, df):
if (len(df.columns) > 3):
st.error('File has more than 3 coloumns.')
return False
if (len(df.columns) == 0):
st.error('File has no column.')
return False
else:
return True
def format_data(self, df):
headers = [[] for i in range(0, len(df.columns))]
for i in range(len(df.columns)):
headers[i] = list(df[df.columns[i]])
zipped = list(zip(*headers))
res = [' '.join(map(str,tups)) for tups in zipped]
input_format = ' labels ' + ' - '.join(list(df.columns)) + ' values ' + ' , '.join(res)
return input_format
def combine_title_data(self,df):
data = self.format_data(df)
title_data = ' '.join([self.title,data])
return title_data
class Model:
def __init__(self,text,mode):
self.padding = 'max_length'
self.truncation = True
self.prefix = 'C2T: '
self.device = device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.text = text
if mode.lower() == 'simple':
self.tokenizer = AutoTokenizer.from_pretrained('saadob12/t5_C2T_big')
self.model = AutoModelForSeq2SeqLM.from_pretrained('saadob12/t5_C2T_big').to(self.device)
elif mode.lower() == 'analytical':
self.tokenizer = AutoTokenizer.from_pretrained('saadob12/t5_C2T_autochart')
self.model = AutoModelForSeq2SeqLM.from_pretrained('saadob12/t5_C2T_autochart').to(self.device)
def generate(self):
tokens = self.tokenizer.encode(self.prefix + self.text, truncation=self.truncation, padding=self.padding, return_tensors='pt').to(self.device)
generated = self.model.generate(tokens, num_beams=4, max_length=256)
tgt_text = self.tokenizer.decode(generated[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
summary = str(tgt_text).strip('[]""')
return summary
def main():
'''
pre = preProcess('test.csv', 'Comparison between two models')
contents = pre.read_data()
check = pre.check_columns(contents)
if check:
title_data = pre.combine_title_data(contents)
print(title_data)
model = Model(title_data, 'simple')
summary = model.generate()'''
uploaded_file = st.file_uploader("Choose a file")
if __name__ == "__main__":
main()