Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,79 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import pandas as pd
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
|
6 |
+
class preProcess:
|
7 |
+
def __init__(self, filename, titlename):
|
8 |
+
self.filename = filename
|
9 |
+
self.title = titlename + '\n'
|
10 |
|
11 |
+
def read_data(self):
|
12 |
+
df = pd.read_csv(self.filename)
|
13 |
+
return df
|
14 |
+
|
15 |
+
|
16 |
+
def check_columns(self, df):
|
17 |
+
if (len(df.columns) > 3):
|
18 |
+
st.error('File has more than 3 coloumns.')
|
19 |
+
return False
|
20 |
+
if (len(df.columns) == 0):
|
21 |
+
st.error('File has no column.')
|
22 |
+
return False
|
23 |
+
else:
|
24 |
+
return True
|
25 |
+
|
26 |
+
def format_data(self, df):
|
27 |
+
headers = [[] for i in range(0, len(df.columns))]
|
28 |
+
for i in range(len(df.columns)):
|
29 |
+
headers[i] = list(df[df.columns[i]])
|
30 |
+
zipped = list(zip(*headers))
|
31 |
+
res = [' '.join(map(str,tups)) for tups in zipped]
|
32 |
+
input_format = ' labels ' + ' - '.join(list(df.columns)) + ' values ' + ' , '.join(res)
|
33 |
+
|
34 |
+
return input_format
|
35 |
+
|
36 |
+
|
37 |
+
def combine_title_data(self,df):
|
38 |
+
data = self.format_data(df)
|
39 |
+
title_data = ' '.join([self.title,data])
|
40 |
+
|
41 |
+
return title_data
|
42 |
+
|
43 |
+
class Model:
|
44 |
+
def __init__(self,text,mode):
|
45 |
+
self.padding = 'max_length'
|
46 |
+
self.truncation = True
|
47 |
+
self.prefix = 'C2T: '
|
48 |
+
self.device = device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
49 |
+
self.text = text
|
50 |
+
if mode.lower() == 'simple':
|
51 |
+
self.tokenizer = AutoTokenizer.from_pretrained('saadob12/t5_C2T_big')
|
52 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained('saadob12/t5_C2T_big').to(self.device)
|
53 |
+
elif mode.lower() == 'analytical':
|
54 |
+
self.tokenizer = AutoTokenizer.from_pretrained('saadob12/t5_C2T_autochart')
|
55 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained('saadob12/t5_C2T_autochart').to(self.device)
|
56 |
+
|
57 |
+
def generate(self):
|
58 |
+
tokens = self.tokenizer.encode(self.prefix + self.text, truncation=self.truncation, padding=self.padding, return_tensors='pt').to(self.device)
|
59 |
+
generated = self.model.generate(tokens, num_beams=4, max_length=256)
|
60 |
+
tgt_text = self.tokenizer.decode(generated[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
61 |
+
summary = str(tgt_text).strip('[]""')
|
62 |
+
return summary
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
def main():
|
67 |
+
'''
|
68 |
+
pre = preProcess('test.csv', 'Comparison between two models')
|
69 |
+
contents = pre.read_data()
|
70 |
+
check = pre.check_columns(contents)
|
71 |
+
if check:
|
72 |
+
title_data = pre.combine_title_data(contents)
|
73 |
+
print(title_data)
|
74 |
+
model = Model(title_data, 'simple')
|
75 |
+
summary = model.generate()'''
|
76 |
+
uploaded_file = st.file_uploader("Choose a file")
|
77 |
+
if __name__ == "__main__":
|
78 |
+
main()
|
79 |
+
|