File size: 6,807 Bytes
45f1f60
 
ea36e00
93457a9
45f1f60
 
 
 
 
7165161
45f1f60
 
 
 
 
 
 
93457a9
45f1f60
93457a9
ea36e00
45f1f60
 
 
 
ea36e00
93457a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45f1f60
7165161
45f1f60
7165161
 
 
 
45f1f60
ea36e00
93457a9
 
45f1f60
 
93457a9
 
45f1f60
 
93457a9
 
45f1f60
 
93457a9
 
 
 
 
 
 
 
 
 
ea36e00
45f1f60
 
 
7165161
93457a9
7165161
45f1f60
 
 
 
 
 
 
 
 
 
93457a9
3971c40
 
ea36e00
93457a9
 
 
 
 
 
 
 
ea36e00
45f1f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea36e00
 
 
93457a9
 
 
ea36e00
 
93457a9
ea36e00
 
 
 
 
93457a9
45f1f60
 
ea36e00
 
45f1f60
 
 
93457a9
 
 
 
 
45f1f60
 
 
 
 
 
 
93457a9
45f1f60
ea36e00
45f1f60
93457a9
 
 
 
 
 
 
 
45f1f60
 
 
 
 
 
 
 
 
 
 
93457a9
45f1f60
93457a9
 
45f1f60
 
 
93457a9
 
45f1f60
93457a9
45f1f60
 
93457a9
 
 
45f1f60
 
93457a9
 
 
45f1f60
 
 
93457a9
45f1f60
ea36e00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# gradio
import gradio as gr
#import random
import time
#boto3 for S3 access
import boto3
from botocore import UNSIGNED
from botocore.client import Config
# access .env file
import os
from dotenv import load_dotenv
#from bs4 import BeautifulSoup
# HF libraries
from langchain.llms import HuggingFaceHub
from langchain.embeddings import HuggingFaceHubEmbeddings
# vectorestore
from langchain.vectorstores import Chroma
#from langchain.vectorstores import FAISS
# retrieval chain
#from langchain.chains import RetrievalQA
from langchain.chains import RetrievalQAWithSourcesChain
# prompt template
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
# logging
import logging
#import zipfile
# improve results with retriever
# from langchain.retrievers import ContextualCompressionRetriever
# from langchain.retrievers.document_compressors import LLMChainExtractor
# from langchain.retrievers.document_compressors import EmbeddingsFilter
# from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.retrievers import BM25Retriever, EnsembleRetriever
# reorder retrived documents
#from langchain.document_transformers import LongContextReorder
# github issues
from langchain.document_loaders import GitHubIssuesLoader
# debugging
from langchain.globals import set_verbose
# caching
from langchain.globals import set_llm_cache
#from langchain.cache import InMemoryCache
# We can do the same thing with a SQLite cache
from langchain.cache import SQLiteCache
#set_llm_cache(InMemoryCache())

set_verbose(True)

# load .env variables
config = load_dotenv(".env")
HUGGINGFACEHUB_API_TOKEN=os.getenv('HUGGINGFACEHUB_API_TOKEN')
AWS_S3_LOCATION=os.getenv('AWS_S3_LOCATION')
AWS_S3_FILE=os.getenv('AWS_S3_FILE')
VS_DESTINATION=os.getenv('VS_DESTINATION')

# initialize Model config
model_id = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.1", model_kwargs={
    # "temperature":0.1, 
    "max_new_tokens":1024, 
    "repetition_penalty":1.2, 
#    "streaming": True, 
#    "return_full_text":True
    })

#model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
model_name = "sentence-transformers/all-mpnet-base-v2"
embeddings = HuggingFaceHubEmbeddings(repo_id=model_name)

# remove old vectorstore
if os.path.exists(VS_DESTINATION):
    os.remove(VS_DESTINATION)

# remove old sqlite cache
if os.path.exists('.langchain.sqlite'):
    os.remove('.langchain.sqlite')

set_llm_cache(SQLiteCache(database_path=".langchain.sqlite"))

# retrieve vectorsrore
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))

## Chroma DB
s3.download_file(AWS_S3_LOCATION, AWS_S3_FILE, VS_DESTINATION)
# use the cached embeddings instead of embeddings to speed up re-retrival
db = Chroma(persist_directory="./vectorstore", embedding_function=embeddings)
db.get()

## FAISS DB
# s3.download_file('rad-rag-demos', 'vectorstores/faiss_db_ray.zip', './chroma_db/faiss_db_ray.zip')
# with zipfile.ZipFile('./chroma_db/faiss_db_ray.zip', 'r') as zip_ref:
#     zip_ref.extractall('./chroma_db/')

# FAISS_INDEX_PATH='./chroma_db/faiss_db_ray'
# db = FAISS.load_local(FAISS_INDEX_PATH, embeddings)

# initialize the bm25 retriever and chroma/faiss retriever
# bm25_retriever = BM25Retriever.
# bm25_retriever.k = 2

retriever = db.as_retriever(search_type="mmr")#, search_kwargs={'k': 3, 'lambda_mult': 0.25})

# asks LLM to create 3 alternatives baed on user query
# multi_retriever = MultiQueryRetriever.from_llm(retriever=retriever, llm=model_id)

# asks LLM to extract relevant parts from retrieved documents
# compressor = LLMChainExtractor.from_llm(model_id)
# compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=multi_retriever)

global qa 
template = """
You are the friendly documentation buddy Arti, who helps the Human in using RAY, the open-source unified framework for scaling AI and Python applications.\
    Use the following context (delimited by <ctx></ctx>) and the chat history (delimited by <hs></hs>) to answer the question :
------
<ctx>
{context}
</ctx>
------
<hs>
{history}
</hs>
------
{question}
Answer:
"""
prompt = PromptTemplate(
    input_variables=["history", "context", "question"],
    template=template,
)
memory = ConversationBufferMemory(memory_key="history", input_key="question")

# logging for the chain
logging.basicConfig()
logging.getLogger("langchain.retrievers").setLevel(logging.INFO)    
logging.getLogger("langchain.chains.qa_with_sources").setLevel(logging.INFO)    



# qa = RetrievalQA.from_chain_type(llm=model_id, retriever=retriever, return_source_documents=True, verbose=True, chain_type_kwargs={
#     "verbose": True,
#     "memory": memory,
#     "prompt": prompt
# }
#     )
qa = RetrievalQAWithSourcesChain.from_chain_type(llm=model_id, retriever=retriever, return_source_documents=True, verbose=True, chain_type_kwargs={
    "verbose": True,
    "memory": memory,
    "prompt": prompt,
    "document_variable_name": "context"
}
    )


#####
#
# Gradio fns
####

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""

def bot(history):
    response = infer(history[-1][0], history)
    sources = [doc.metadata.get("source") for doc in response['source_documents']]
    src_list = '\n'.join(sources)
    print_this = response['answer'] + "\n\n\n Sources: \n\n\n" + src_list

    # history[-1][1] = ""
    # for character in response['answer']: 
    #     #print_this:
    #     history[-1][1] += character
    #     time.sleep(0.01)
    #     yield history
    history[-1][1] = print_this #response['answer']
    return history

def infer(question, history):
    query =  question
    result = qa({"query": query, "history": history, "question": question})
    return result

css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 1920px;">
    <h1>Chat with your Documentation</h1>
    <p style="text-align: center;">This is a privately hosten Docs AI Buddy, <br />
    It will help you with any question regarding the documentation of Ray ;)</p>
</div>
"""



with gr.Blocks(css=css) as demo:
    with gr.Column(min_width=900, elem_id="col-container"):
        gr.HTML(title)      
        chatbot = gr.Chatbot([], elem_id="chatbot")
        #with gr.Row():
        #    clear = gr.Button("Clear")

        with gr.Row():
            question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
        with gr.Row():
            clear = gr.ClearButton([chatbot, question])

    question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
        bot, chatbot, chatbot
    )
    #clear.click(lambda: None, None, chatbot, queue=False)

demo.queue().launch()