Spaces:
Sleeping
Sleeping
File size: 5,794 Bytes
45f1f60 ea36e00 45f1f60 7165161 45f1f60 ea36e00 45f1f60 ea36e00 45f1f60 ea36e00 d4bbccc ea36e00 45f1f60 7165161 45f1f60 7165161 45f1f60 ea36e00 45f1f60 ea36e00 45f1f60 7165161 45f1f60 ea36e00 45f1f60 ea36e00 45f1f60 ea36e00 45f1f60 ea36e00 45f1f60 ea36e00 45f1f60 ea36e00 45f1f60 ea36e00 45f1f60 ea36e00 45f1f60 ea36e00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# gradio
import gradio as gr
#import random
#import time
#boto3 for S3 access
import boto3
from botocore import UNSIGNED
from botocore.client import Config
# access .env file
import os
from dotenv import load_dotenv
#from bs4 import BeautifulSoup
# HF libraries
from langchain.llms import HuggingFaceHub
from langchain.embeddings import HuggingFaceHubEmbeddings
# vectorestore
from langchain.vectorstores import Chroma
from langchain.vectorstores import FAISS
# retrieval chain
from langchain.chains import RetrievalQA
from langchain.chains import RetrievalQAWithSourcesChain
# prompt template
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
# logging
import logging
import zipfile
#contextual retriever
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.retrievers.multi_query import MultiQueryRetriever
# streaming
#from threading import Thread
#from transformers import TextIteratorStreamer
# load .env variables
config = load_dotenv(".env")
HUGGINGFACEHUB_API_TOKEN=os.getenv('HUGGINGFACEHUB_API_TOKEN')
AWS_S3_LOCATION=os.getenv('AWS_S3_LOCATION')
AWS_S3_FILE=os.getenv('AWS_S3_FILE')
VS_DESTINATION=os.getenv('VS_DESTINATION')
# initialize Model config
model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={
"temperature":0.1,
"max_new_tokens":1024,
"repetition_penalty":1.2,
"streaming": True,
"return_full_text":True
})
model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
embeddings = HuggingFaceHubEmbeddings(repo_id=model_name)
# retrieve vectorsrore
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
## Chroma DB
s3.download_file(AWS_S3_LOCATION, AWS_S3_FILE, VS_DESTINATION)
db = Chroma(persist_directory="./vectorstore", embedding_function=embeddings)
db.get()
## FAISS DB
# s3.download_file('rad-rag-demos', 'vectorstores/faiss_db_ray.zip', './chroma_db/faiss_db_ray.zip')
# with zipfile.ZipFile('./chroma_db/faiss_db_ray.zip', 'r') as zip_ref:
# zip_ref.extractall('./chroma_db/')
# FAISS_INDEX_PATH='./chroma_db/faiss_db_ray'
# db = FAISS.load_local(FAISS_INDEX_PATH, embeddings)
retriever = db.as_retriever(search_type = "mmr")#, search_kwargs={'k': 5, 'fetch_k': 25})
compressor = LLMChainExtractor.from_llm(model_id)
compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever)
# embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76)
# compression_retriever = ContextualCompressionRetriever(base_compressor=embeddings_filter, base_retriever=retriever)
global qa
template = """
You are the friendly documentation buddy Arti, who helps the Human in using RAY, the open-source unified framework for scaling AI and Python applications.\
Use the following context (delimited by <ctx></ctx>) and the chat history (delimited by <hs></hs>) to answer the question :
------
<ctx>
{context}
</ctx>
------
<hs>
{history}
</hs>
------
{question}
Answer:
"""
prompt = PromptTemplate(
input_variables=["history", "context", "question"],
template=template,
)
memory = ConversationBufferMemory(memory_key="history", input_key="question")
# logging for the chain
logging.basicConfig()
logging.getLogger("langchain.chains").setLevel(logging.INFO)
# qa = RetrievalQA.from_chain_type(llm=model_id, chain_type="stuff", retriever=compression_retriever, verbose=True, return_source_documents=True, chain_type_kwargs={
# "verbose": True,
# "memory": memory,
# "prompt": prompt
# }
# )
qa = RetrievalQAWithSourcesChain.from_chain_type(llm=model_id, retriever=compression_retriever, verbose=True, chain_type_kwargs={
"verbose": True,
"memory": memory,
"prompt": prompt,
"document_variable_name": "context"
}
)
def pretty_print_docs(docs):
print(f"\n{'-' * 100}\n".join([f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]))
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0], history)
print(*response)
print(*memory)
sources = [doc.metadata.get("source") for doc in response['sources']]
src_list = '\n'.join(sources)
print_this = response['answer'] + "\n\n\n Sources: \n\n\n" + src_list
#sources = f"`Sources:`\n\n' + response['sources']"
#history[-1][1] = ""
#for character in response['result']: #print_this:
# history[-1][1] += character
# time.sleep(0.05)
# yield history
history[-1][1] = response['answer']
return history #, sources
def infer(question, history):
query = question
result = qa({"query": query, "history": history, "question": question})
return result
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chat with your Documentation</h1>
<p style="text-align: center;">Chat with Documentation, <br />
when everything is ready, you can start asking questions about the docu ;)</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
chatbot = gr.Chatbot([], elem_id="chatbot")
clear = gr.Button("Clear")
with gr.Row():
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue().launch() |