Spaces:
Sleeping
Sleeping
removed commented out code for readability
Browse files
app.py
CHANGED
@@ -1,48 +1,44 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
import time
|
|
|
5 |
#boto3 for S3 access
|
6 |
import boto3
|
7 |
from botocore import UNSIGNED
|
8 |
from botocore.client import Config
|
9 |
-
|
10 |
-
import os
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
#from bs4 import BeautifulSoup
|
13 |
# HF libraries
|
14 |
from langchain.llms import HuggingFaceHub
|
15 |
from langchain.embeddings import HuggingFaceHubEmbeddings
|
16 |
# vectorestore
|
17 |
from langchain.vectorstores import Chroma
|
18 |
-
|
19 |
# retrieval chain
|
20 |
-
#from langchain.chains import RetrievalQA
|
21 |
from langchain.chains import RetrievalQAWithSourcesChain
|
22 |
# prompt template
|
23 |
from langchain.prompts import PromptTemplate
|
24 |
from langchain.memory import ConversationBufferMemory
|
25 |
-
# logging
|
26 |
-
import logging
|
27 |
-
#import zipfile
|
28 |
-
# improve results with retriever
|
29 |
-
# from langchain.retrievers import ContextualCompressionRetriever
|
30 |
-
# from langchain.retrievers.document_compressors import LLMChainExtractor
|
31 |
-
# from langchain.retrievers.document_compressors import EmbeddingsFilter
|
32 |
-
# from langchain.retrievers.multi_query import MultiQueryRetriever
|
33 |
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
34 |
# reorder retrived documents
|
35 |
-
#from langchain.document_transformers import LongContextReorder
|
36 |
# github issues
|
37 |
from langchain.document_loaders import GitHubIssuesLoader
|
38 |
# debugging
|
39 |
from langchain.globals import set_verbose
|
40 |
# caching
|
41 |
from langchain.globals import set_llm_cache
|
42 |
-
#from langchain.cache import InMemoryCache
|
43 |
# We can do the same thing with a SQLite cache
|
44 |
from langchain.cache import SQLiteCache
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
|
47 |
set_verbose(True)
|
48 |
|
@@ -65,7 +61,7 @@ llm = HuggingFaceHub(repo_id=llm_model_name, model_kwargs={
|
|
65 |
# "return_full_text":True
|
66 |
})
|
67 |
|
68 |
-
#
|
69 |
embedding_model_name = "sentence-transformers/all-mpnet-base-v2"
|
70 |
embeddings = HuggingFaceHubEmbeddings(repo_id=embedding_model_name)
|
71 |
|
@@ -88,26 +84,14 @@ s3.download_file(AWS_S3_LOCATION, AWS_S3_FILE, VS_DESTINATION)
|
|
88 |
db = Chroma(persist_directory="./vectorstore", embedding_function=embeddings)
|
89 |
db.get()
|
90 |
|
91 |
-
## FAISS DB
|
92 |
-
# s3.download_file('rad-rag-demos', 'vectorstores/faiss_db_ray.zip', './chroma_db/faiss_db_ray.zip')
|
93 |
-
# with zipfile.ZipFile('./chroma_db/faiss_db_ray.zip', 'r') as zip_ref:
|
94 |
-
# zip_ref.extractall('./chroma_db/')
|
95 |
-
|
96 |
-
# FAISS_INDEX_PATH='./chroma_db/faiss_db_ray'
|
97 |
-
# db = FAISS.load_local(FAISS_INDEX_PATH, embeddings)
|
98 |
-
|
99 |
-
# initialize the bm25 retriever and chroma/faiss retriever
|
100 |
-
# bm25_retriever = BM25Retriever.
|
101 |
-
# bm25_retriever.k = 2
|
102 |
|
103 |
retriever = db.as_retriever(search_type="mmr")#, search_kwargs={'k': 3, 'lambda_mult': 0.25})
|
104 |
|
105 |
# asks LLM to create 3 alternatives baed on user query
|
106 |
-
|
107 |
|
108 |
# asks LLM to extract relevant parts from retrieved documents
|
109 |
-
|
110 |
-
# compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=multi_retriever)
|
111 |
|
112 |
global qa
|
113 |
template = """
|
@@ -138,12 +122,7 @@ logging.getLogger("langchain.chains.qa_with_sources").setLevel(logging.INFO)
|
|
138 |
|
139 |
|
140 |
|
141 |
-
|
142 |
-
# "verbose": True,
|
143 |
-
# "memory": memory,
|
144 |
-
# "prompt": prompt
|
145 |
-
# }
|
146 |
-
# )
|
147 |
qa = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True, verbose=True, chain_type_kwargs={
|
148 |
"verbose": True,
|
149 |
"memory": memory,
|
@@ -168,12 +147,7 @@ def bot(history):
|
|
168 |
src_list = '\n'.join(sources)
|
169 |
print_this = response['answer'] + "\n\n\n Sources: \n\n\n" + src_list
|
170 |
|
171 |
-
|
172 |
-
# for character in response['answer']:
|
173 |
-
# #print_this:
|
174 |
-
# history[-1][1] += character
|
175 |
-
# time.sleep(0.01)
|
176 |
-
# yield history
|
177 |
history[-1][1] = print_this #response['answer']
|
178 |
return history
|
179 |
|
|
|
1 |
+
|
2 |
+
# logging
|
3 |
+
import logging
|
4 |
+
|
5 |
+
# access .env file
|
6 |
+
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
|
9 |
import time
|
10 |
+
|
11 |
#boto3 for S3 access
|
12 |
import boto3
|
13 |
from botocore import UNSIGNED
|
14 |
from botocore.client import Config
|
15 |
+
|
|
|
|
|
|
|
16 |
# HF libraries
|
17 |
from langchain.llms import HuggingFaceHub
|
18 |
from langchain.embeddings import HuggingFaceHubEmbeddings
|
19 |
# vectorestore
|
20 |
from langchain.vectorstores import Chroma
|
21 |
+
|
22 |
# retrieval chain
|
|
|
23 |
from langchain.chains import RetrievalQAWithSourcesChain
|
24 |
# prompt template
|
25 |
from langchain.prompts import PromptTemplate
|
26 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
28 |
# reorder retrived documents
|
|
|
29 |
# github issues
|
30 |
from langchain.document_loaders import GitHubIssuesLoader
|
31 |
# debugging
|
32 |
from langchain.globals import set_verbose
|
33 |
# caching
|
34 |
from langchain.globals import set_llm_cache
|
|
|
35 |
# We can do the same thing with a SQLite cache
|
36 |
from langchain.cache import SQLiteCache
|
37 |
+
|
38 |
+
# gradio
|
39 |
+
import gradio as gr
|
40 |
+
|
41 |
+
|
42 |
|
43 |
set_verbose(True)
|
44 |
|
|
|
61 |
# "return_full_text":True
|
62 |
})
|
63 |
|
64 |
+
# initialize Embedding config
|
65 |
embedding_model_name = "sentence-transformers/all-mpnet-base-v2"
|
66 |
embeddings = HuggingFaceHubEmbeddings(repo_id=embedding_model_name)
|
67 |
|
|
|
84 |
db = Chroma(persist_directory="./vectorstore", embedding_function=embeddings)
|
85 |
db.get()
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
retriever = db.as_retriever(search_type="mmr")#, search_kwargs={'k': 3, 'lambda_mult': 0.25})
|
89 |
|
90 |
# asks LLM to create 3 alternatives baed on user query
|
91 |
+
|
92 |
|
93 |
# asks LLM to extract relevant parts from retrieved documents
|
94 |
+
|
|
|
95 |
|
96 |
global qa
|
97 |
template = """
|
|
|
122 |
|
123 |
|
124 |
|
125 |
+
|
|
|
|
|
|
|
|
|
|
|
126 |
qa = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True, verbose=True, chain_type_kwargs={
|
127 |
"verbose": True,
|
128 |
"memory": memory,
|
|
|
147 |
src_list = '\n'.join(sources)
|
148 |
print_this = response['answer'] + "\n\n\n Sources: \n\n\n" + src_list
|
149 |
|
150 |
+
|
|
|
|
|
|
|
|
|
|
|
151 |
history[-1][1] = print_this #response['answer']
|
152 |
return history
|
153 |
|