docs_qachat / app.py
sabazo's picture
import time and random for streaming
af0bbbe
raw
history blame
2.26 kB
import gradio as gr
import random
import time
import boto3
from botocore import UNSIGNED
from botocore.client import Config
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
from langchain.llms import HuggingFaceHub
model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":1024})
from langchain.embeddings import HuggingFaceHubEmbeddings
embeddings = HuggingFaceHubEmbeddings()
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
s3.download_file('rad-rag-demos', 'vectorstores/chroma.sqlite3', './chroma_db/chroma.sqlite3')
db = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
db.get()
retriever = db.as_retriever()
global qa
qa = RetrievalQA.from_chain_type(llm=model_id, chain_type="stuff", retriever=retriever)
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0])
history[-1][1] = ""
for character in response['result']:
history[-1][1] += character
time.sleep(0.05)
yield history
def infer(question):
query = question
result = qa({"query": query})
return result
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chat with PDF</h1>
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
when everything is ready, you can start asking questions about the pdf ;)</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
chatbot = gr.Chatbot([], elem_id="chatbot")
with gr.Row():
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
demo.launch()