Spaces:
Sleeping
Sleeping
Asaad Almutareb
commited on
Commit
·
25cdf03
1
Parent(s):
bec8a7b
added adaptive cards
Browse files- innovation_pathfinder_ai/backend/app/schemas/adaptive_cards_schema.py +8 -0
- innovation_pathfinder_ai/backend/app/utils/adaptive_cards/cards.py +141 -0
- innovation_pathfinder_ai/backend/app/utils/callback.py +162 -2
- innovation_pathfinder_ai/backend/app/utils/chains.py +35 -0
- innovation_pathfinder_ai/frontend/app.py +4 -3
- requirements.txt +3 -1
innovation_pathfinder_ai/backend/app/schemas/adaptive_cards_schema.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
|
5 |
+
class ICreateMediaAC(BaseModel):
|
6 |
+
media_object: Any
|
7 |
+
media_type: str
|
8 |
+
url: str
|
innovation_pathfinder_ai/backend/app/utils/adaptive_cards/cards.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import adaptive_cards.card_types as types
|
2 |
+
from adaptive_cards.card import AdaptiveCard
|
3 |
+
from adaptive_cards.elements import TextBlock, Image, Media
|
4 |
+
from adaptive_cards.containers import Container, ImageSet
|
5 |
+
from adaptive_cards.actions import ActionSubmit
|
6 |
+
import re
|
7 |
+
|
8 |
+
from app.schemas.adaptive_cards_schema import ICreateMediaAC
|
9 |
+
|
10 |
+
|
11 |
+
def custom_media(anwser):
|
12 |
+
regex_http = r'https?://[^\s"]+'
|
13 |
+
url_search = re.search(regex_http, anwser)
|
14 |
+
url_search_all = re.findall(regex_http, anwser)
|
15 |
+
|
16 |
+
regex_image = r"\b(https?|ftp):\/\/[^\s/$.?#].[^\s]*\.(jpg|jpeg|png|gif|webp)\b"
|
17 |
+
url_image_search = re.search(regex_image, anwser)
|
18 |
+
|
19 |
+
if url_image_search:
|
20 |
+
url_image = url_search.group()
|
21 |
+
if url_image.endswith(")"):
|
22 |
+
url_image = url_image[:-1]
|
23 |
+
if url_image.endswith(")."):
|
24 |
+
url_image = url_image[:-2]
|
25 |
+
media = Image(url=url_image)
|
26 |
+
return None
|
27 |
+
return ICreateMediaAC(media_object=media, media_type="image", url=url_image)
|
28 |
+
|
29 |
+
regex_audio = r"\b(https?|ftp):\/\/[^\s/$.?#].[^\s]*\.(mp3|wav|ogg)\b"
|
30 |
+
url_search_audio = re.search(regex_audio, anwser)
|
31 |
+
if url_search_audio:
|
32 |
+
url_audio = url_search_audio.group()
|
33 |
+
media = Media(
|
34 |
+
sources=[{"mimeType": "audio/mp3", "url": url_audio}],
|
35 |
+
poster="https://adaptivecards.io/content/poster-audio.jpg",
|
36 |
+
)
|
37 |
+
return ICreateMediaAC(media_object=media, media_type="audio", url=url_audio)
|
38 |
+
|
39 |
+
regex_video = r"\b(https?|ftp):\/\/[^\s/$.?#].[^\s]*\.(mp4|webm|ogg)\b"
|
40 |
+
url_search_video = re.search(regex_video, anwser)
|
41 |
+
if url_search_video:
|
42 |
+
url_video = url_search_video.group()
|
43 |
+
media = Media(
|
44 |
+
sources=[{"mimeType": "video/mp4", "url": url_video}],
|
45 |
+
# poster="https://adaptivecards.io/content/poster-video.png",
|
46 |
+
poster="https://douglasgreen.com/wp-content/uploads/2014/03/video-play-btn-featured.png",
|
47 |
+
)
|
48 |
+
return ICreateMediaAC(media_object=media, media_type="video", url=url_video)
|
49 |
+
|
50 |
+
regex_youtube_video = (
|
51 |
+
r"(https?://)?(www\.)?"
|
52 |
+
"(youtube|youtu|youtube-nocookie)\\.(com|be)/"
|
53 |
+
"(watch\\?v=|embed/|v/|.+\\?v=)?([^&=%\\?]{11})"
|
54 |
+
)
|
55 |
+
url_search_youtube_video = re.search(regex_youtube_video, anwser)
|
56 |
+
|
57 |
+
if url_search_youtube_video:
|
58 |
+
url_youtube_video = url_search_youtube_video.group()
|
59 |
+
media = Media(
|
60 |
+
sources=[{"mimeType": "video/mp4", "url": url_youtube_video}],
|
61 |
+
)
|
62 |
+
return ICreateMediaAC(
|
63 |
+
media_object=media, media_type="youtube_video", url=url_youtube_video
|
64 |
+
)
|
65 |
+
|
66 |
+
if len(url_search_all) > 0:
|
67 |
+
list_media_element = []
|
68 |
+
for photo in url_search_all:
|
69 |
+
if "https://images.unsplash.com" in photo:
|
70 |
+
media = Image(url=photo)
|
71 |
+
list_media_element.append(media)
|
72 |
+
body_container_images = ImageSet(images=list_media_element)
|
73 |
+
return None
|
74 |
+
return ICreateMediaAC(
|
75 |
+
media_object=body_container_images, media_type="image", url=""
|
76 |
+
)
|
77 |
+
|
78 |
+
return None
|
79 |
+
|
80 |
+
|
81 |
+
def create_hidden_video_card(url):
|
82 |
+
return Media(
|
83 |
+
sources=[
|
84 |
+
{
|
85 |
+
"mimeType": "video/mp4",
|
86 |
+
"url": url,
|
87 |
+
}
|
88 |
+
],
|
89 |
+
is_visible=False,
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
def create_adaptive_card(answer: str, actions: list[str] = []) -> AdaptiveCard:
|
94 |
+
custom_media_element: ICreateMediaAC | None = custom_media(answer)
|
95 |
+
custom_media_item = (
|
96 |
+
custom_media_element.media_object if custom_media_element else None
|
97 |
+
)
|
98 |
+
hidden_video_youtube = None
|
99 |
+
# if custom_media_element.media_type == "youtube_video":
|
100 |
+
# hidden_video_youtube = create_hidden_video_card(custom_media_element.url)
|
101 |
+
if custom_media_element and custom_media_element.media_type == "youtube_video":
|
102 |
+
hidden_video_youtube = create_hidden_video_card(custom_media_element.url)
|
103 |
+
|
104 |
+
# if custom_media_element:
|
105 |
+
# answer = answer.replace(custom_media_element.url, "")
|
106 |
+
|
107 |
+
description_text = TextBlock(text=answer, wrap=True)
|
108 |
+
items = [
|
109 |
+
description_text,
|
110 |
+
custom_media_item,
|
111 |
+
hidden_video_youtube,
|
112 |
+
]
|
113 |
+
body_container = Container(items=items)
|
114 |
+
|
115 |
+
# crear action
|
116 |
+
actions = [ActionSubmit(title=action) for action in actions]
|
117 |
+
|
118 |
+
# Crear Adaptive Card
|
119 |
+
adaptive_card = AdaptiveCard(body=[body_container], actions=actions, version="1.5")
|
120 |
+
|
121 |
+
return adaptive_card
|
122 |
+
|
123 |
+
|
124 |
+
def create_image_card(image_url: str) -> AdaptiveCard:
|
125 |
+
image = Image(url=image_url)
|
126 |
+
body_container = Container(items=[image])
|
127 |
+
adaptive_card = AdaptiveCard(body=[body_container], version="1.5")
|
128 |
+
|
129 |
+
return adaptive_card
|
130 |
+
|
131 |
+
|
132 |
+
def create_loading_card(image_url: str) -> AdaptiveCard:
|
133 |
+
image = Image(
|
134 |
+
url=image_url,
|
135 |
+
size="small",
|
136 |
+
horizontal_alignment=types.HorizontalAlignment.LEFT,
|
137 |
+
)
|
138 |
+
body_container = Container(items=[image])
|
139 |
+
adaptive_card = AdaptiveCard(body=[body_container], version="1.5")
|
140 |
+
|
141 |
+
return adaptive_card
|
innovation_pathfinder_ai/backend/app/utils/callback.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
from app.schemas.message_schema import IChatResponse
|
|
|
|
|
2 |
from langchain.callbacks.base import AsyncCallbackHandler
|
3 |
from app.utils.utils import generate_uuid
|
4 |
from fastapi import WebSocket
|
@@ -51,6 +53,10 @@ class CustomAsyncCallbackHandler(AsyncCallbackHandler):
|
|
51 |
self.message_id: str = message_id
|
52 |
self.text: str = ""
|
53 |
self.started: bool = False
|
|
|
|
|
|
|
|
|
54 |
|
55 |
if answer_prefix_tokens is None:
|
56 |
self.answer_prefix_tokens = DEFAULT_ANSWER_PREFIX_TOKENS
|
@@ -88,6 +94,7 @@ class CustomAsyncCallbackHandler(AsyncCallbackHandler):
|
|
88 |
self.append_to_last_tokens(token)
|
89 |
|
90 |
self.text += f"{token}"
|
|
|
91 |
resp = IChatResponse(
|
92 |
# id=generate_uuid(),
|
93 |
id="",
|
@@ -96,7 +103,7 @@ class CustomAsyncCallbackHandler(AsyncCallbackHandler):
|
|
96 |
message=self.adaptive_card.to_dict(),
|
97 |
type="stream",
|
98 |
)
|
99 |
-
await self.websocket.send_json(resp.
|
100 |
|
101 |
async def on_llm_end(
|
102 |
self,
|
@@ -115,4 +122,157 @@ class CustomAsyncCallbackHandler(AsyncCallbackHandler):
|
|
115 |
message=self.adaptive_card.to_dict(),
|
116 |
type="end",
|
117 |
)
|
118 |
-
await self.websocket.send_json(resp.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from app.schemas.message_schema import IChatResponse
|
2 |
+
from app.utils.adaptive_cards.cards import create_adaptive_card, create_image_card
|
3 |
+
from app.utils.chains import get_suggestions_questions
|
4 |
from langchain.callbacks.base import AsyncCallbackHandler
|
5 |
from app.utils.utils import generate_uuid
|
6 |
from fastapi import WebSocket
|
|
|
53 |
self.message_id: str = message_id
|
54 |
self.text: str = ""
|
55 |
self.started: bool = False
|
56 |
+
self.loading_card = create_image_card(
|
57 |
+
"https://res.cloudinary.com/dnv0qwkrk/image/upload/v1691005682/Alita/Ellipsis-2.4s-81px_1_nja8hq.gif"
|
58 |
+
)
|
59 |
+
self.adaptive_card = self.loading_card
|
60 |
|
61 |
if answer_prefix_tokens is None:
|
62 |
self.answer_prefix_tokens = DEFAULT_ANSWER_PREFIX_TOKENS
|
|
|
94 |
self.append_to_last_tokens(token)
|
95 |
|
96 |
self.text += f"{token}"
|
97 |
+
self.adaptive_card = create_adaptive_card(self.text)
|
98 |
resp = IChatResponse(
|
99 |
# id=generate_uuid(),
|
100 |
id="",
|
|
|
103 |
message=self.adaptive_card.to_dict(),
|
104 |
type="stream",
|
105 |
)
|
106 |
+
await self.websocket.send_json(resp.model_dump())
|
107 |
|
108 |
async def on_llm_end(
|
109 |
self,
|
|
|
122 |
message=self.adaptive_card.to_dict(),
|
123 |
type="end",
|
124 |
)
|
125 |
+
await self.websocket.send_json(resp.model_dump())
|
126 |
+
|
127 |
+
|
128 |
+
class CustomFinalStreamingStdOutCallbackHandler(AsyncCallbackHandler):
|
129 |
+
"""Callback handler for streaming in agents.
|
130 |
+
Only works with agents using LLMs that support streaming.
|
131 |
+
|
132 |
+
Only the final output of the agent will be streamed.
|
133 |
+
"""
|
134 |
+
|
135 |
+
def append_to_last_tokens(self, token: str) -> None:
|
136 |
+
self.last_tokens.append(token)
|
137 |
+
self.last_tokens_stripped.append(token.strip())
|
138 |
+
if len(self.last_tokens) > len(self.answer_prefix_tokens):
|
139 |
+
self.last_tokens.pop(0)
|
140 |
+
self.last_tokens_stripped.pop(0)
|
141 |
+
|
142 |
+
def check_if_answer_reached(self) -> bool:
|
143 |
+
if self.strip_tokens:
|
144 |
+
return self.last_tokens_stripped == self.answer_prefix_tokens_stripped
|
145 |
+
else:
|
146 |
+
return self.last_tokens == self.answer_prefix_tokens
|
147 |
+
|
148 |
+
def update_message_id(self, message_id: str = generate_uuid()):
|
149 |
+
self.message_id = message_id
|
150 |
+
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
websocket: WebSocket,
|
154 |
+
*,
|
155 |
+
message_id: str = generate_uuid(),
|
156 |
+
answer_prefix_tokens: list[str] | None = None,
|
157 |
+
strip_tokens: bool = True,
|
158 |
+
stream_prefix: bool = False,
|
159 |
+
) -> None:
|
160 |
+
"""Instantiate FinalStreamingStdOutCallbackHandler.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
answer_prefix_tokens: Token sequence that prefixes the answer.
|
164 |
+
Default is ["Final", "Answer", ":"]
|
165 |
+
strip_tokens: Ignore white spaces and new lines when comparing
|
166 |
+
answer_prefix_tokens to last tokens? (to determine if answer has been
|
167 |
+
reached)
|
168 |
+
stream_prefix: Should answer prefix itself also be streamed?
|
169 |
+
"""
|
170 |
+
self.websocket: WebSocket = websocket
|
171 |
+
self.message_id: str = message_id
|
172 |
+
self.text: str = ""
|
173 |
+
self.started: bool = False
|
174 |
+
self.loading_card = create_image_card(
|
175 |
+
"https://res.cloudinary.com/dnv0qwkrk/image/upload/v1691005682/Alita/Ellipsis-2.4s-81px_1_nja8hq.gif"
|
176 |
+
)
|
177 |
+
self.adaptive_card = self.loading_card
|
178 |
+
|
179 |
+
if answer_prefix_tokens is None:
|
180 |
+
self.answer_prefix_tokens = DEFAULT_ANSWER_PREFIX_TOKENS
|
181 |
+
else:
|
182 |
+
self.answer_prefix_tokens = answer_prefix_tokens
|
183 |
+
if strip_tokens:
|
184 |
+
self.answer_prefix_tokens_stripped = [
|
185 |
+
token.strip() for token in self.answer_prefix_tokens
|
186 |
+
]
|
187 |
+
else:
|
188 |
+
self.answer_prefix_tokens_stripped = self.answer_prefix_tokens
|
189 |
+
self.last_tokens = [""] * len(self.answer_prefix_tokens)
|
190 |
+
self.last_tokens_stripped = [""] * len(self.answer_prefix_tokens)
|
191 |
+
self.strip_tokens = strip_tokens
|
192 |
+
self.stream_prefix = stream_prefix
|
193 |
+
self.answer_reached = False
|
194 |
+
|
195 |
+
async def on_llm_start(
|
196 |
+
self, serialized: dict[str, Any], prompts: list[str], **kwargs: Any
|
197 |
+
) -> None:
|
198 |
+
"""Run when LLM starts running."""
|
199 |
+
if self.started == False:
|
200 |
+
self.started = True
|
201 |
+
resp = IChatResponse(
|
202 |
+
id="",
|
203 |
+
message_id=self.message_id,
|
204 |
+
sender="bot",
|
205 |
+
message=self.loading_card.to_dict(),
|
206 |
+
type="start",
|
207 |
+
)
|
208 |
+
await self.websocket.send_json(resp.model_dump())
|
209 |
+
|
210 |
+
async def on_agent_finish(
|
211 |
+
self,
|
212 |
+
finish: AgentFinish,
|
213 |
+
*,
|
214 |
+
run_id: UUID,
|
215 |
+
parent_run_id: UUID | None = None,
|
216 |
+
**kwargs: Any,
|
217 |
+
) -> Any:
|
218 |
+
"""Run on agent end."""
|
219 |
+
message: str = (
|
220 |
+
self.text
|
221 |
+
if self.text != ""
|
222 |
+
# else "😕 Lo siento no he podido hallar lo que buscabas"
|
223 |
+
else finish.return_values["output"]
|
224 |
+
)
|
225 |
+
self.adaptive_card = create_adaptive_card(message)
|
226 |
+
|
227 |
+
resp = IChatResponse(
|
228 |
+
id="",
|
229 |
+
message_id=self.message_id,
|
230 |
+
sender="bot",
|
231 |
+
message=self.adaptive_card.to_dict(),
|
232 |
+
type="stream",
|
233 |
+
)
|
234 |
+
await self.websocket.send_json(resp.dict())
|
235 |
+
|
236 |
+
suggested_responses = await get_suggestions_questions(message)
|
237 |
+
if len(suggested_responses) > 0:
|
238 |
+
self.adaptive_card = create_adaptive_card(
|
239 |
+
answer=message,
|
240 |
+
)
|
241 |
+
medium_resp = IChatResponse(
|
242 |
+
id="",
|
243 |
+
message_id=self.message_id,
|
244 |
+
sender="bot",
|
245 |
+
message=self.adaptive_card.to_dict(),
|
246 |
+
type="end",
|
247 |
+
suggested_responses=suggested_responses,
|
248 |
+
)
|
249 |
+
await self.websocket.send_json(medium_resp.model_dump())
|
250 |
+
|
251 |
+
# Reset values
|
252 |
+
self.text = ""
|
253 |
+
self.answer_reached = False
|
254 |
+
self.started = False
|
255 |
+
|
256 |
+
async def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
257 |
+
"""Run on new LLM token. Only available when streaming is enabled."""
|
258 |
+
# Remember the last n tokens, where n = len(answer_prefix_tokens)
|
259 |
+
self.append_to_last_tokens(token)
|
260 |
+
|
261 |
+
# Check if the last n tokens match the answer_prefix_tokens list ...
|
262 |
+
if self.check_if_answer_reached():
|
263 |
+
self.answer_reached = True
|
264 |
+
return
|
265 |
+
|
266 |
+
# ... if yes, then print tokens from now on
|
267 |
+
if self.answer_reached:
|
268 |
+
self.text += f"{token}"
|
269 |
+
self.adaptive_card = create_adaptive_card(self.text)
|
270 |
+
|
271 |
+
resp = IChatResponse(
|
272 |
+
id="",
|
273 |
+
message_id=self.message_id,
|
274 |
+
sender="bot",
|
275 |
+
message=self.adaptive_card.to_dict(),
|
276 |
+
type="stream",
|
277 |
+
)
|
278 |
+
await self.websocket.send_json(resp.model_dump())
|
innovation_pathfinder_ai/backend/app/utils/chains.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain import LLMChain, PromptTemplate
|
2 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
3 |
+
|
4 |
+
import re
|
5 |
+
|
6 |
+
|
7 |
+
async def get_suggestions_questions(input: str) -> list[str]:
|
8 |
+
"""Get suggestions questions."""
|
9 |
+
|
10 |
+
llm = HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
11 |
+
temperature=0.1,
|
12 |
+
max_new_tokens=1024,
|
13 |
+
repetition_penalty=1.2,
|
14 |
+
return_full_text=False
|
15 |
+
)
|
16 |
+
|
17 |
+
prompt_is_farewell_topic_chain = PromptTemplate(
|
18 |
+
input_variables=["input"],
|
19 |
+
template="Determinate if the '{input}' is related to the topic of farewell and return True or False",
|
20 |
+
)
|
21 |
+
prompt = PromptTemplate(
|
22 |
+
input_variables=["input"],
|
23 |
+
template="Create three good suggestions questions about this topic of: {input}. Return the suggestions like a list.",
|
24 |
+
)
|
25 |
+
is_farewell_topic_chain = LLMChain(llm=llm, prompt=prompt_is_farewell_topic_chain)
|
26 |
+
is_farewell_topic_response = await is_farewell_topic_chain.arun(input)
|
27 |
+
suggested_responses = []
|
28 |
+
|
29 |
+
if "False" in is_farewell_topic_response:
|
30 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
31 |
+
response_chain = await chain.arun(input)
|
32 |
+
suggested_responses = re.findall(r"\d+\.\s(.*?\?)", response_chain)
|
33 |
+
suggested_responses = suggested_responses[:3]
|
34 |
+
|
35 |
+
return suggested_responses
|
innovation_pathfinder_ai/frontend/app.py
CHANGED
@@ -57,6 +57,7 @@ if __name__ == "__main__":
|
|
57 |
# response_w_sources = response['output']+"\n\n\n Sources: \n\n\n Internal knowledge base"
|
58 |
# else:
|
59 |
# response_w_sources = response['output']+"\n\n\n Sources: \n\n\n"+src_list
|
|
|
60 |
history[-1][1] = response['output']
|
61 |
# all_sources.clear()
|
62 |
return history
|
@@ -69,7 +70,8 @@ if __name__ == "__main__":
|
|
69 |
"message": question,
|
70 |
"history": history
|
71 |
}
|
72 |
-
|
|
|
73 |
|
74 |
# Wait for the response
|
75 |
response_data = await websocket.recv()
|
@@ -135,8 +137,7 @@ if __name__ == "__main__":
|
|
135 |
with gr.Accordion("Open for More!", open=False):
|
136 |
gr.Markdown("Nothing yet...")
|
137 |
|
138 |
-
demo.queue()
|
139 |
-
demo.launch(debug=True, favicon_path="assets/favicon.ico", share=True)
|
140 |
|
141 |
x = 0 # for debugging purposes
|
142 |
app = gr.mount_gradio_app(app, demo, path="/")
|
|
|
57 |
# response_w_sources = response['output']+"\n\n\n Sources: \n\n\n Internal knowledge base"
|
58 |
# else:
|
59 |
# response_w_sources = response['output']+"\n\n\n Sources: \n\n\n"+src_list
|
60 |
+
print(response)
|
61 |
history[-1][1] = response['output']
|
62 |
# all_sources.clear()
|
63 |
return history
|
|
|
70 |
"message": question,
|
71 |
"history": history
|
72 |
}
|
73 |
+
json_data = json.dumps(message_data)
|
74 |
+
await websocket.send(json_data)
|
75 |
|
76 |
# Wait for the response
|
77 |
response_data = await websocket.recv()
|
|
|
137 |
with gr.Accordion("Open for More!", open=False):
|
138 |
gr.Markdown("Nothing yet...")
|
139 |
|
140 |
+
demo.queue().launch(debug=True, favicon_path="assets/favicon.ico", share=True)
|
|
|
141 |
|
142 |
x = 0 # for debugging purposes
|
143 |
app = gr.mount_gradio_app(app, demo, path="/")
|
requirements.txt
CHANGED
@@ -13,4 +13,6 @@ sqlmodel
|
|
13 |
rich
|
14 |
fastapi
|
15 |
uvicorn
|
16 |
-
sentence-transformers
|
|
|
|
|
|
13 |
rich
|
14 |
fastapi
|
15 |
uvicorn
|
16 |
+
sentence-transformers
|
17 |
+
fastapi-pagination
|
18 |
+
adaptive-cards-py
|