Spaces:
Sleeping
Sleeping
hybrid search doc string added
Browse files- rag_app/get_db_retriever.py +1 -1
- rag_app/hybrid_search.py +63 -0
- rag_app/metadata.ipynb +0 -170
- rag_app/metadata_filtering.py +0 -29
rag_app/get_db_retriever.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# retriever and qa_chain function
|
2 |
|
3 |
# HF libraries
|
4 |
from langchain.llms import HuggingFaceHub
|
|
|
1 |
+
gi# retriever and qa_chain function
|
2 |
|
3 |
# HF libraries
|
4 |
from langchain.llms import HuggingFaceHub
|
rag_app/hybrid_search.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from langchain_community.vectorstores import FAISS
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import os
|
5 |
+
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
6 |
+
from langchain.retrievers import EnsembleRetriever
|
7 |
+
from langchain_community.retrievers import BM25Retriever
|
8 |
+
|
9 |
+
|
10 |
+
def get_hybrid_search_results(query:str,
|
11 |
+
path_to_db:str,
|
12 |
+
embedding_model:str,
|
13 |
+
hf_api_key:str,
|
14 |
+
num_docs:int=5) -> list:
|
15 |
+
""" Uses an ensemble retriever of BM25 and FAISS to return k num documents
|
16 |
+
|
17 |
+
Args:
|
18 |
+
query (str): The search query
|
19 |
+
path_to_db (str): Path to the vectorstore database
|
20 |
+
embedding_model (str): Embedding model used in the vector store
|
21 |
+
num_docs (int): Number of documents to return
|
22 |
+
|
23 |
+
Returns
|
24 |
+
List of documents
|
25 |
+
|
26 |
+
"""
|
27 |
+
|
28 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=hf_api_key,
|
29 |
+
model_name=embedding_model)
|
30 |
+
# Load the vectorstore database
|
31 |
+
db = FAISS.load_local(folder_path=path_to_db,
|
32 |
+
embeddings=embeddings,
|
33 |
+
allow_dangerous_deserialization=True)
|
34 |
+
|
35 |
+
all_docs = db.similarity_search("", k=db.index.ntotal)
|
36 |
+
|
37 |
+
bm25_retriever = BM25Retriever.from_documents(all_docs)
|
38 |
+
bm25_retriever.k = num_docs # How many results you want
|
39 |
+
|
40 |
+
faiss_retriever = db.as_retriever(search_kwargs={'k': num_docs})
|
41 |
+
|
42 |
+
ensemble_retriever = EnsembleRetriever(retrievers=[bm25_retriever, faiss_retriever],
|
43 |
+
weights=[0.5,0.5])
|
44 |
+
|
45 |
+
results = ensemble_retriever.invoke(input=query)
|
46 |
+
return results
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
query = "Haustierversicherung"
|
51 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
52 |
+
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL")
|
53 |
+
|
54 |
+
path_to_vector_db = Path("..")/'vectorstore/faiss-insurance-agent-500'
|
55 |
+
|
56 |
+
results = get_hybrid_search_results(query=query,
|
57 |
+
path_to_db=path_to_vector_db,
|
58 |
+
embedding_model=EMBEDDING_MODEL,
|
59 |
+
hf_api_key=HUGGINGFACEHUB_API_TOKEN)
|
60 |
+
|
61 |
+
for doc in results:
|
62 |
+
print(doc)
|
63 |
+
print()
|
rag_app/metadata.ipynb
DELETED
@@ -1,170 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"from pathlib import Path\n",
|
10 |
-
"from langchain_community.vectorstores import FAISS\n",
|
11 |
-
"from dotenv import load_dotenv\n",
|
12 |
-
"import os\n",
|
13 |
-
"from langchain_huggingface import HuggingFaceEmbeddings"
|
14 |
-
]
|
15 |
-
},
|
16 |
-
{
|
17 |
-
"cell_type": "code",
|
18 |
-
"execution_count": 3,
|
19 |
-
"metadata": {},
|
20 |
-
"outputs": [
|
21 |
-
{
|
22 |
-
"data": {
|
23 |
-
"text/plain": [
|
24 |
-
"True"
|
25 |
-
]
|
26 |
-
},
|
27 |
-
"execution_count": 3,
|
28 |
-
"metadata": {},
|
29 |
-
"output_type": "execute_result"
|
30 |
-
}
|
31 |
-
],
|
32 |
-
"source": [
|
33 |
-
"load_dotenv()"
|
34 |
-
]
|
35 |
-
},
|
36 |
-
{
|
37 |
-
"cell_type": "code",
|
38 |
-
"execution_count": 5,
|
39 |
-
"metadata": {},
|
40 |
-
"outputs": [],
|
41 |
-
"source": [
|
42 |
-
"HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFCEHUB_API_TOKEN')\n",
|
43 |
-
"EMBEDDING_MODEL = os.getenv(\"EMBEDDING_MODEL\")"
|
44 |
-
]
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"cell_type": "code",
|
48 |
-
"execution_count": null,
|
49 |
-
"metadata": {},
|
50 |
-
"outputs": [],
|
51 |
-
"source": [
|
52 |
-
"embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)"
|
53 |
-
]
|
54 |
-
},
|
55 |
-
{
|
56 |
-
"cell_type": "code",
|
57 |
-
"execution_count": 7,
|
58 |
-
"metadata": {},
|
59 |
-
"outputs": [],
|
60 |
-
"source": [
|
61 |
-
"folder_path = Path('..') / \"vectorstore/faiss-insurance-agent-500\"\n",
|
62 |
-
"faissdb = FAISS.load_local(folder_path=str(folder_path.resolve()),\n",
|
63 |
-
" embeddings=embeddings,\n",
|
64 |
-
" allow_dangerous_deserialization=True) "
|
65 |
-
]
|
66 |
-
},
|
67 |
-
{
|
68 |
-
"cell_type": "code",
|
69 |
-
"execution_count": 24,
|
70 |
-
"metadata": {},
|
71 |
-
"outputs": [
|
72 |
-
{
|
73 |
-
"name": "stdout",
|
74 |
-
"output_type": "stream",
|
75 |
-
"text": [
|
76 |
-
"Content: Die private Haftpflichtversicherung...\n",
|
77 |
-
"Metadata: {'source': 'https://www.wuerttembergische.de/versicherungen/stadt/wuppertal/', 'content_type': 'text/html; charset=UTF-8', 'title': 'Versicherung in Wuppertal', 'description': 'Ihre Versicherungsagentur in Wuppertal: Kommen Sie zur Württembergischen Versicherung und profitieren Sie von einer persönlichen Beratung und ausgezeichnetem Service. ', 'language': 'de'}\n",
|
78 |
-
"---\n",
|
79 |
-
"Content: Haftpflichtversicherung...\n",
|
80 |
-
"Metadata: {'source': 'https://www.wuerttembergische.de/wohnen/hausratversicherung/sengschaden/', 'content_type': 'text/html; charset=UTF-8', 'title': 'Sengschäden: So schützt Sie Ihre Hausrat- und Wohngebäudeversicherung', 'description': 'Deckt Ihre Hausratversicherung Sengschäden ab? Finden Sie heraus, wie Sie bei Schäden durch Glut oder Hitze ohne direktes Feuer geschützt sind.\\n', 'language': 'de'}\n",
|
81 |
-
"---\n",
|
82 |
-
"Content: Die Leistungen unserer privaten Haftpflichtversich...\n",
|
83 |
-
"Metadata: {'source': 'https://www.wuerttembergische.de/existenz/private-haftpflichtversicherung/drohnen-versichern/', 'content_type': 'text/html; charset=UTF-8', 'title': 'Drohnen über die private Haftpflicht versichern', 'description': 'Müssen Drohnen versichert sein? Welcher Tarif ist der beste? Erfahren Sie hier die wichtigsten Informationen rund ums Thema Drohne versichern.', 'language': 'de'}\n",
|
84 |
-
"---\n",
|
85 |
-
"Content: Das kann ohne private Haftpflichtversicherung pass...\n",
|
86 |
-
"Metadata: {'source': 'https://www.wuerttembergische.de/existenz/private-haftpflichtversicherung/pflicht/', 'content_type': 'text/html; charset=UTF-8', 'title': 'Ist die private Haftpflichtversicherung Pflicht oder freiwillig?', 'description': 'Ist eine Privathaftpflichtversicherung gesetzlich vorgeschrieben? Welche Haftpflichtversicherung Pflicht sind und welche freiwillig - das erfahren Sie hier.', 'language': 'de'}\n",
|
87 |
-
"---\n",
|
88 |
-
"Content: Private Haftpflicht: keine Pflichtversicherung\n",
|
89 |
-
"Fre...\n",
|
90 |
-
"Metadata: {'source': 'https://www.wuerttembergische.de/existenz/private-haftpflichtversicherung/pflicht/', 'content_type': 'text/html; charset=UTF-8', 'title': 'Ist die private Haftpflichtversicherung Pflicht oder freiwillig?', 'description': 'Ist eine Privathaftpflichtversicherung gesetzlich vorgeschrieben? Welche Haftpflichtversicherung Pflicht sind und welche freiwillig - das erfahren Sie hier.', 'language': 'de'}\n",
|
91 |
-
"---\n"
|
92 |
-
]
|
93 |
-
}
|
94 |
-
],
|
95 |
-
"source": [
|
96 |
-
"# Perform a similarity search with an empty query to get random documents\n",
|
97 |
-
"documents = faissdb.similarity_search(\"Private Haftpflichtversicherung\", k=5)\n",
|
98 |
-
"\n",
|
99 |
-
"for doc in documents:\n",
|
100 |
-
" print(f\"Content: {doc.page_content[:50]}...\") # Print first 50 chars of content\n",
|
101 |
-
" print(f\"Metadata: {doc.metadata}\")\n",
|
102 |
-
" print(\"---\")"
|
103 |
-
]
|
104 |
-
},
|
105 |
-
{
|
106 |
-
"cell_type": "code",
|
107 |
-
"execution_count": 19,
|
108 |
-
"metadata": {},
|
109 |
-
"outputs": [
|
110 |
-
{
|
111 |
-
"name": "stdout",
|
112 |
-
"output_type": "stream",
|
113 |
-
"text": [
|
114 |
-
"Number of entries in the database: 62496\n"
|
115 |
-
]
|
116 |
-
}
|
117 |
-
],
|
118 |
-
"source": [
|
119 |
-
"num_entries = len(faissdb.index_to_docstore_id)\n",
|
120 |
-
"print(f\"Number of entries in the database: {num_entries}\")"
|
121 |
-
]
|
122 |
-
},
|
123 |
-
{
|
124 |
-
"cell_type": "code",
|
125 |
-
"execution_count": 20,
|
126 |
-
"metadata": {},
|
127 |
-
"outputs": [
|
128 |
-
{
|
129 |
-
"name": "stdout",
|
130 |
-
"output_type": "stream",
|
131 |
-
"text": [
|
132 |
-
"Number of entries in the database: 62496\n"
|
133 |
-
]
|
134 |
-
}
|
135 |
-
],
|
136 |
-
"source": [
|
137 |
-
"num_entries = faissdb.index.ntotal\n",
|
138 |
-
"print(f\"Number of entries in the database: {num_entries}\")"
|
139 |
-
]
|
140 |
-
},
|
141 |
-
{
|
142 |
-
"cell_type": "code",
|
143 |
-
"execution_count": null,
|
144 |
-
"metadata": {},
|
145 |
-
"outputs": [],
|
146 |
-
"source": []
|
147 |
-
}
|
148 |
-
],
|
149 |
-
"metadata": {
|
150 |
-
"kernelspec": {
|
151 |
-
"display_name": "venv",
|
152 |
-
"language": "python",
|
153 |
-
"name": "python3"
|
154 |
-
},
|
155 |
-
"language_info": {
|
156 |
-
"codemirror_mode": {
|
157 |
-
"name": "ipython",
|
158 |
-
"version": 3
|
159 |
-
},
|
160 |
-
"file_extension": ".py",
|
161 |
-
"mimetype": "text/x-python",
|
162 |
-
"name": "python",
|
163 |
-
"nbconvert_exporter": "python",
|
164 |
-
"pygments_lexer": "ipython3",
|
165 |
-
"version": "3.11.4"
|
166 |
-
}
|
167 |
-
},
|
168 |
-
"nbformat": 4,
|
169 |
-
"nbformat_minor": 2
|
170 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rag_app/metadata_filtering.py
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
from langchain_community.vectorstores import FAISS
|
3 |
-
from dotenv import load_dotenv
|
4 |
-
import os
|
5 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
-
|
7 |
-
|
8 |
-
load_dotenv(".env")
|
9 |
-
|
10 |
-
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
11 |
-
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL")
|
12 |
-
|
13 |
-
|
14 |
-
if __name__ == "__main__":
|
15 |
-
|
16 |
-
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
|
17 |
-
|
18 |
-
folder_path = Path('..') / "vectorstore/faiss-insurance-agent-500"
|
19 |
-
|
20 |
-
print(f'{Path(folder_path).exists() = }')
|
21 |
-
|
22 |
-
faissdb = FAISS.load_local(folder_path=str(folder_path.resolve()),
|
23 |
-
embeddings=embeddings,
|
24 |
-
allow_dangerous_deserialization=True)
|
25 |
-
|
26 |
-
documents = faissdb.get(list(range(5)))
|
27 |
-
|
28 |
-
for doc in documents:
|
29 |
-
print(f"Metadata: {doc.metadata}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|