File size: 2,972 Bytes
5c0e14a
 
 
 
69b2fee
5c0e14a
 
 
 
b9c3147
 
 
 
 
 
5c0e14a
4f3af9f
 
 
 
 
 
 
da72fb0
 
 
 
 
5c0e14a
7c54c70
4f3af9f
 
e499db4
 
5c0e14a
67a31f1
 
 
 
5c0e14a
17fba42
b9c3147
17fba42
 
 
 
 
 
da72fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8549fec
da72fb0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from huggingface_hub import InferenceClient
import gradio as gr

client = InferenceClient(
    "mistralai/Mistral-7B-Instruct-v0.2"
)


def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=16000, top_p=0.95, repetition_penalty=1.0,):

        temperature = float(temperature)
        if temperature < 1e-2:
            temperature = 1e-2
        top_p = float(top_p)

        generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,)
    
        formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""

        for response in stream:
            output += response.token.text
            yield output
        return output

css = """
    #mkd {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

additional_inputs=[
        gr.Textbox(
                    label="System Prompt",
                    max_lines=1,
                    interactive=True,
        ),
        gr.Slider(
                    label="Temperature",
                    value=0.9,
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    interactive=True,
                    info="Higher values produce more diverse outputs",
        ),
        gr.Slider(
                    label="Max new tokens",
                    value=4192,
                    minimum=4192,
                    maximum=33536,
                    step=64,
                    interactive=True,
                    info="The maximum numbers of new tokens",
        ),
        gr.Slider(
                    label="Top-p (nucleus sampling)",
                    value=0.90,
                    minimum=0.0,
                    maximum=1,
                    step=0.05,
                    interactive=True,
                    info="Higher values sample more low-probability tokens",
        ),
        gr.Slider(
                    label="Repetition penalty",
                    value=1.2,
                    minimum=1.0,
                    maximum=2.0,
                    step=0.05,
                    interactive=True,
                    info="Penalize repeated tokens",
        )
]

gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    additional_inputs=additional_inputs,
    title="Mistral 7B Instruct",
).launch(show_api=True)