File size: 15,019 Bytes
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a5e58
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a5e58
9b19c29
80a5e58
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a5e58
 
 
 
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a5e58
 
 
 
 
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a5e58
 
 
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a5e58
 
 
9b19c29
80a5e58
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a5e58
9b19c29
 
 
 
 
 
 
2befa79
 
 
 
9b19c29
 
80a5e58
9b19c29
 
 
 
 
 
 
2befa79
 
 
9b19c29
 
80a5e58
9b19c29
 
 
 
 
 
 
2befa79
 
 
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
2befa79
9b19c29
 
 
 
 
 
 
 
 
 
2befa79
 
 
 
9b19c29
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import gradio as gr
import datetime
import os
import pprint
import sys

import numpy as np
import torch
from examples.atari.atari_network import C51
from examples.atari.atari_wrapper import wrap_deepmind

from tianshou.data import Collector
from examples.atari.tianshou.policy import C51Policy 

import gymnasium as gym

from examples.atari.tianshou.env.venvs import DummyVectorEnv



from examples.atari.tianshou.utils.net.discrete import FractionProposalNetwork, FullQuantileFunction, FullQuantileFunctionRainbow
from examples.atari.atari_network import DQN
from examples.atari.tianshou.policy import FQFPolicy,FQF_RainbowPolicy


def seed(self, seed):
    np.random.seed(seed)

# Define configuration parameters
config_c51 = {
    "task": "PongNoFrameskip-v4",
    "seed": 3128,
    "scale_obs": 0,
    "eps_test": 0.005,
    "eps_train": 1.0,
    "eps_train_final": 0.05,
    "buffer_size": 100000,
    "lr": 0.0001,
    "gamma": 0.99,
    "num_atoms": 51,
    "v_min": -10.0,
    "v_max": 10.0,
    "n_step": 3,
    "target_update_freq": 500,
    "epoch": 100,
    "step_per_epoch": 100000,
    "step_per_collect": 10,
    "update_per_step": 0.1,
    "batch_size": 32,
    "training_num": 1,
    "test_num": 1,
    "logdir": "log",
    "render": 0.0,
    "device": "cuda" if torch.cuda.is_available() else "cpu",
    "frames_stack": 4,
    "resume_path": "examples/atari/c51_pong.pth",
    "resume_id": "",
    "logger": "tensorboard",
    "wandb_project": "atari.benchmark",
    "watch": True,
    "save_buffer_name": None
}


config_fqf = {
    "task": "SpaceInvadersNoFrameskip-v4",
    "seed": 3128,
    "scale_obs": 0,
    "eps_test": 0.005,
    "eps_train": 1.0,
    "eps_train_final": 0.05,
    "buffer_size": 100000,
    "lr": 5e-5,
    "fraction_lr": 2.5e-9,
    "gamma": 0.99,
    "num_fractions": 32,
    "num_cosines": 64,
    "ent_coef": 10.0,
    "hidden_sizes": [512],
    "n_step": 3,
    "target_update_freq": 500,
    "epoch": 100,
    "step_per_epoch": 100000,
    "step_per_collect": 10,
    "update_per_step": 0.1,
    "batch_size": 32,
    "training_num": 1,
    "test_num": 1,
    "logdir": "log",
    "render": 0.0,
    "device": "cuda" if torch.cuda.is_available() else "cpu",
    "frames_stack": 4,
    "resume_path": "fqf_pong.pth",
    "resume_id": None,
    "logger": "tensorboard",
    "wandb_project": "atari.benchmark",
    "watch": True,
    "save_buffer_name": None,
}


config_fqf_r = {
    "task": "PongNoFrameskip-v4",
    "algo_name": "RainbowFQF",
    "seed": 3128,
    "scale_obs": 0,
    "eps_test": 0.005,
    "eps_train": 1.0,
    "eps_train_final": 0.05,
    "buffer_size": 100000,
    "lr": 5e-5,
    "fraction_lr": 2.5e-9,
    "gamma": 0.99,
    "num_fractions": 32,
    "num_cosines": 64,
    "ent_coef": 10.0,
    "hidden_sizes": [512],
    "n_step": 3,
    "target_update_freq": 500,
    "epoch": 100,
    "step_per_epoch": 100000,
    "step_per_collect": 10,
    "update_per_step": 0.1,
    "batch_size": 32,
    "training_num": 1,
    "test_num": 1,
    "logdir": "log",
    "no_dueling": False,
    "no_noisy": False,
    "no_priority": False,
    "noisy_std": 0.1,
    "alpha": 0.5,
    "beta": 0.4,
    "beta_final": 1.0,
    "beta_anneal_step": 5000000,
    "no_weight_norm": False,
    "render": 0.0,
    "device": "cuda" if torch.cuda.is_available() else "cpu",
    "frames_stack": 4,
    "resume_path": None,
    "resume_id": None,
    "logger": "tensorboard",
    "wandb_project": "atari.benchmark",
    "watch": False,
    "save_buffer_name": None,
    "per": False,
}


def test_c51(config : dict) -> None:
    # _, _, test_envs,_ = make_atari_watch_env(
    #     config["task"],
    #     config["seed"],
    #     config["training_num"],
    #     config["test_num"],
    #     scale=config["scale_obs"],
    #     frame_stack=config["frames_stack"],
    # )
    env_wrap = gym.make(config["task"],render_mode = 'rgb_array')
    env_wrap.action_space.seed(config["seed"])
    env_deep = wrap_deepmind(env_wrap)
    rec_env = DummyVectorEnv(
        [
            lambda: gym.wrappers.RecordVideo(
                env_deep, 
                video_folder='video-app/'
            )
        ]
    )
    state_shape = env_deep.observation_space.shape or env_deep.observation_space.n
    action_shape = env_deep.action_space.shape or env_deep.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape:", state_shape)
    print("Actions shape:", action_shape)
    # seed
    np.random.seed(config["seed"])
    torch.manual_seed(config["seed"])
    # rec_env.seed(config["seed"])
    # test_envs.seed(config["seed"])
    print("seed is ",config["seed"])
    

    net = C51(*state_shape, action_shape, config["num_atoms"], config["device"])
    optim = torch.optim.Adam(net.parameters(), lr=config["lr"])
    # define policy
    policy = C51Policy(
        model=net,
        optim=optim,
        discount_factor=config["gamma"],
        action_space=env_deep.action_space,
        num_atoms=config["num_atoms"],
        v_min=config["v_min"],
        v_max=config["v_max"],
        estimation_step=config["n_step"],
        target_update_freq=config["target_update_freq"],
    ).to(config["device"])
    # load a previous policy
    if config["resume_path"]:
        policy.load_state_dict(torch.load(config["resume_path"], map_location=config["device"]))
        print("Loaded agent from:", config["resume_path"])

    

    collector = Collector(policy, rec_env, exploration_noise=True)
    # result = collector.collect(n_episode=config["test_num"], render=config["render"])
    result = collector.collect(n_episode=config["test_num"])
    # Collector(policy, rec_env, exploration_noise=True).collect(n_episode=config["test_num"])
    rec_env.close()
    result.pprint_asdict()
    return result

def test_FQF(config : dict) -> None:
    
    # _, _, test_envs,_ = make_atari_watch_env(
    #     config["task"],
    #     config["seed"],
    #     config["training_num"],
    #     config["test_num"],
    #     scale=config["scale_obs"],
    #     frame_stack=config["frames_stack"],
    # )

    env_wrap = gym.make(config["task"],render_mode = 'rgb_array')
    env_wrap.action_space.seed(config["seed"])
    env_deep = wrap_deepmind(env_wrap)
    
    rec_env = DummyVectorEnv(
        [
            lambda: gym.wrappers.RecordVideo(
                env_deep, 
                video_folder='video-app/'
            )
        ]
    )

    state_shape = env_deep.observation_space.shape or env_deep.observation_space.n
    action_shape = env_deep.action_space.shape or env_deep.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape:", state_shape)
    print("Actions shape:", action_shape)
    # seed
    print(config["seed"])
    # np.random.seed(config["seed"])
    # torch.manual_seed(config["seed"])
    # rec_env.seed(config["seed"])

    feature_net = DQN(*state_shape, action_shape, config["device"], features_only=True)

    # Create FullQuantileFunction net
    net = FullQuantileFunction(
        feature_net,
        action_shape,
        config["hidden_sizes"],
        config["num_cosines"],
    ).to(config["device"])

    # Create Adam optimizer
    optim = torch.optim.Adam(net.parameters(), lr=config["lr"])

    # Create FractionProposalNetwork
    fraction_net = FractionProposalNetwork(config["num_fractions"], net.input_dim)

    # Create RMSprop optimizer for fraction_net
    fraction_optim = torch.optim.RMSprop(fraction_net.parameters(), lr=config["fraction_lr"])

    # Define policy using FQFPolicy
    policy: FQFPolicy = FQFPolicy(
        model=net,
        optim=optim,
        fraction_model=fraction_net,
        fraction_optim=fraction_optim,
        action_space=env_deep.action_space,
        discount_factor=config["gamma"],
        num_fractions=config["num_fractions"],
        ent_coef=config["ent_coef"],
        estimation_step=config["n_step"],
        target_update_freq=config["target_update_freq"],
    ).to(config["device"])

    # load a previous policy
    if config["resume_path"]:
        policy.load_state_dict(torch.load(config["resume_path"], map_location=config["device"]))
        print("Loaded agent from:", config["resume_path"])

   
    collector = Collector(policy, rec_env, exploration_noise=True)

    # result = collector.collect(n_episode=config["test_num"], render=config["render"])
    result = collector.collect(n_episode=config["test_num"])
    # Collector(policy, rec_env, exploration_noise=True).collect(n_episode=config["test_num"])
    rec_env.close()
    result.pprint_asdict()
    return result



def test_fqf_rainbow(config: dict) -> None:
    # _, _, test_envs,_ = make_atari_watch_env(
    #     config['task'],
    #     config['seed'],
    #     config['training_num'],
    #     config['test_num'],
    #     scale=config['scale_obs'],
    #     frame_stack=config['frames_stack'],
    # )
    env_wrap = gym.make(config["task"],render_mode = 'rgb_array')
    env_wrap.action_space.seed(config["seed"])
    env_deep = wrap_deepmind(env_wrap)
    rec_env = DummyVectorEnv(
        [
            lambda: gym.wrappers.RecordVideo(
                env_deep, 
                video_folder='video-app/'
            )
        ]
    )


    config['state_shape'] = env_deep.observation_space.shape or env_deep.observation_space.n
    config['action_shape'] = env_deep.action_space.shape or env_deep.action_space.n

    # print(env_deep.action_space)
    # print(test_envs.action_space)

    # should be N_FRAMES x H x W
    # print("Observations shape:", config['state_shape'])
    # print("Actions shape:", config['action_shape'])
    # seed
    print(config["seed"])
    # np.random.seed(config['seed'])
    # torch.manual_seed(config['seed'])
    # test_envs.seed(config['seed'])
    # rec_env.seed(config['seed'])
    # define model
    feature_net = DQN(*config['state_shape'], config['action_shape'], config['device'], features_only=True)
    preprocess_net_output_dim = feature_net.output_dim  # Ensure this is correctly set
    # print(preprocess_net_output_dim)
    net = FullQuantileFunctionRainbow(
        preprocess_net=feature_net,
        action_shape=config['action_shape'],
        hidden_sizes=config['hidden_sizes'],
        num_cosines=config['num_cosines'],
        preprocess_net_output_dim=preprocess_net_output_dim,
        device=config['device'],
        noisy_std=config['noisy_std'],
        is_noisy=not config['no_noisy'],  # Set to True to use noisy layers
        is_dueling=not config['no_dueling'],  # Set to True to use dueling layers
    ).to(config['device'])
    # print(net)
    optim = torch.optim.Adam(net.parameters(), lr=config['lr'])
    fraction_net = FractionProposalNetwork(config['num_fractions'], net.input_dim)
    fraction_optim = torch.optim.RMSprop(fraction_net.parameters(), lr=config['fraction_lr'])
    # define policy
    policy: FQF_RainbowPolicy = FQF_RainbowPolicy(
        model=net,
        optim=optim,
        fraction_model=fraction_net,
        fraction_optim=fraction_optim,
        action_space=env_deep.action_space,
        discount_factor=config['gamma'],
        num_fractions=config['num_fractions'],
        ent_coef=config['ent_coef'],
        estimation_step=config['n_step'],
        target_update_freq=config['target_update_freq'],
        is_noisy=not config['no_noisy']
    ).to(config['device'])
    # load a previous policy
    if config['resume_path']:
        policy.load_state_dict(torch.load(config['resume_path'], map_location=config['device']))
        print("Loaded agent from:", config['resume_path'])
    # policy.eval()
    test_collector = Collector(policy, rec_env, exploration_noise=True)
    result = test_collector.collect(n_episode=config["test_num"])

    #replay
    # Collector(policy, rec_env, exploration_noise=True).collect(n_episode=1)
    
    rec_env.close()
    result.pprint_asdict()
    return result


# Define the function to display choices and mean scores
def display_choice(algo, game,slider):
    # Dictionary to store mean scores for each algorithm and game
    match algo:
        case "C51":
            config_c51["seed"] = slider
            match game:
                case "Freeway":
                    config_c51["resume_path"] = "models/c51_freeway.pth"
                    config_c51["task"] = "FreewayNoFrameskip-v4"
                    mean_scores = test_c51(config_c51)
                    
                case "Pong" :
                    config_c51["resume_path"] = "models/c51_pong.pth"
                    config_c51["task"] = "PongNoFrameskip-v4"
                    mean_scores = test_c51(config_c51)
                    

        case "FQF":
          config_fqf["seed"] = slider
          match game:
                case "Freeway":
                    config_fqf["resume_path"] = "models/fqf_freeway.pth"
                    config_fqf["task"] = "FreewayNoFrameskip-v4"
                    mean_scores = test_FQF(config_fqf)
                    
                case "Pong" :
                    config_fqf["resume_path"] = "models/fqf_pong.pth"
                    config_fqf["task"] = "PongNoFrameskip-v4"
                    mean_scores = test_FQF(config_fqf)

        case "FQF-Rainbow":
            config_fqf_r["seed"] = slider
            match game:
                case "Freeway":
                    config_fqf_r["resume_path"] = "models/fqf-rainbow_freeway.pth"
                    config_fqf_r["task"] = "FreewayNoFrameskip-v4"
                    mean_scores = test_fqf_rainbow(config_fqf_r)
                    
                case "Pong" :
                    config_fqf_r["resume_path"] = "models/fqf-rainbow_pong.pth"
                    config_fqf_r["task"] = "PongNoFrameskip-v4"
                    mean_scores = test_fqf_rainbow(config_fqf_r)

    

    # Calculate or fetch the mean score for the selected combination
    mean_score = mean_scores.returns_stat.mean

    # Return the selected options and the mean score
    # return f"Your {algo} agent finished {game} with a \nMean Score of  ##{mean_score}"
    return [mean_score,"video-app/rl-video-episode-0.mp4"]

# Define the choices for the radio buttons
algos = ["C51", "FQF", "FQF-Rainbow"]
# games = ["Pong", "Space Invaders","Freeway","MsPacman"]
games = ["Freeway","Pong"]


# Create a Gradio Interface
demo = gr.Interface(
    fn=display_choice,          # Function to call when an option is selected
    inputs=[gr.Radio(algos,label="Algorithm"), gr.Radio(games, label="Game"),gr.Slider(maximum=100,label="Seed")],   # Radio buttons with the defined choices
    outputs=[gr.Textbox(label="Score"),gr.Video(autoplay=True,height=480,width=480,label="Replay")],
    title="Distributional RL Algorithms Benchmark",
    description="Select the DRL agent and the game of your choice",
    theme="soft",
    examples=[["FQF","Pong",31],
              ["C51","Freeway",31],
              ["FQF-Rainbow","Freeway",31]
              ]
)

# Launch the Gradio app
if __name__ == "__main__":
    demo.launch(share=False)