File size: 16,902 Bytes
9b19c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
# Borrow a lot from openai baselines:
# https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
import logging
import warnings
from collections import deque
from typing import Any, SupportsFloat
import cv2
import gymnasium as gym
import numpy as np
from gymnasium import Env
from examples.atari.tianshou.env import BaseVectorEnv
from examples.atari.tianshou.highlevel.env import (
EnvFactoryRegistered,
EnvMode,
EnvPoolFactory,
VectorEnvType,
)
from examples.atari.tianshou.highlevel.trainer import EpochStopCallback, TrainingContext
envpool_is_available = True
try:
import envpool
except ImportError:
envpool_is_available = False
envpool = None
log = logging.getLogger(__name__)
def _parse_reset_result(reset_result: tuple) -> tuple[tuple, dict, bool]:
contains_info = (
isinstance(reset_result, tuple)
and len(reset_result) == 2
and isinstance(reset_result[1], dict)
)
if contains_info:
return reset_result[0], reset_result[1], contains_info
return reset_result, {}, contains_info
def get_space_dtype(obs_space: gym.spaces.Box) -> type[np.floating] | type[np.integer]:
obs_space_dtype: type[np.integer] | type[np.floating]
if np.issubdtype(obs_space.dtype, np.integer):
obs_space_dtype = np.integer
elif np.issubdtype(obs_space.dtype, np.floating):
obs_space_dtype = np.floating
else:
raise TypeError(
f"Unsupported observation space dtype: {obs_space.dtype}. "
f"This might be a bug in tianshou or gymnasium, please report it!",
)
return obs_space_dtype
class NoopResetEnv(gym.Wrapper):
"""Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.
:param gym.Env env: the environment to wrap.
:param int noop_max: the maximum value of no-ops to run.
"""
def __init__(self, env: gym.Env, noop_max: int = 30) -> None:
super().__init__(env)
self.noop_max = noop_max
self.noop_action = 0
assert hasattr(env.unwrapped, "get_action_meanings")
assert env.unwrapped.get_action_meanings()[0] == "NOOP"
def reset(self, **kwargs: Any) -> tuple[Any, dict[str, Any]]:
_, info, return_info = _parse_reset_result(self.env.reset(**kwargs))
noops = self.unwrapped.np_random.integers(1, self.noop_max + 1)
for _ in range(noops):
step_result = self.env.step(self.noop_action)
if len(step_result) == 4:
obs, rew, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation)
else:
obs, rew, term, trunc, info = step_result
done = term or trunc
if done:
obs, info, _ = _parse_reset_result(self.env.reset())
if return_info:
return obs, info
return obs, {}
class MaxAndSkipEnv(gym.Wrapper):
"""Return only every `skip`-th frame (frameskipping) using most recent raw observations (for max pooling across time steps).
:param gym.Env env: the environment to wrap.
:param int skip: number of `skip`-th frame.
"""
def __init__(self, env: gym.Env, skip: int = 4) -> None:
super().__init__(env)
self._skip = skip
def step(self, action: Any) -> tuple[Any, float, bool, bool, dict[str, Any]]:
"""Step the environment with the given action.
Repeat action, sum reward, and max over last observations.
"""
obs_list = []
total_reward = 0.0
new_step_api = False
for _ in range(self._skip):
step_result = self.env.step(action)
if len(step_result) == 4:
obs, reward, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation)
else:
obs, reward, term, trunc, info = step_result
done = term or trunc
new_step_api = True
obs_list.append(obs)
total_reward += float(reward)
if done:
break
max_frame = np.max(obs_list[-2:], axis=0)
if new_step_api:
return max_frame, total_reward, term, trunc, info
return max_frame, total_reward, done, info.get("TimeLimit.truncated", False), info
class EpisodicLifeEnv(gym.Wrapper):
"""Make end-of-life == end-of-episode, but only reset on true game over.
It helps the value estimation.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
self.lives = 0
self.was_real_done = True
self._return_info = False
def step(self, action: Any) -> tuple[Any, float, bool, bool, dict[str, Any]]:
step_result = self.env.step(action)
if len(step_result) == 4:
obs, reward, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation)
new_step_api = False
else:
obs, reward, term, trunc, info = step_result
done = term or trunc
new_step_api = True
reward = float(reward)
self.was_real_done = done
# check current lives, make loss of life terminal, then update lives to
# handle bonus lives
assert hasattr(self.env.unwrapped, "ale")
lives = self.env.unwrapped.ale.lives()
if 0 < lives < self.lives:
# for Qbert sometimes we stay in lives == 0 condition for a few
# frames, so its important to keep lives > 0, so that we only reset
# once the environment is actually done.
done = True
term = True
self.lives = lives
if new_step_api:
return obs, reward, term, trunc, info
return obs, reward, done, info.get("TimeLimit.truncated", False), info
def reset(self, **kwargs: Any) -> tuple[Any, dict[str, Any]]:
"""Calls the Gym environment reset, only when lives are exhausted.
This way all states are still reachable even though lives are episodic, and
the learner need not know about any of this behind-the-scenes.
"""
if self.was_real_done:
obs, info, self._return_info = _parse_reset_result(self.env.reset(**kwargs))
else:
# no-op step to advance from terminal/lost life state
step_result = self.env.step(0)
obs, info = step_result[0], step_result[-1]
assert hasattr(self.env.unwrapped, "ale")
self.lives = self.env.unwrapped.ale.lives()
if self._return_info:
return obs, info
return obs, {}
class FireResetEnv(gym.Wrapper):
"""Take action on reset for environments that are fixed until firing.
Related discussion: https://github.com/openai/baselines/issues/240.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
assert hasattr(env.unwrapped, "get_action_meanings")
assert env.unwrapped.get_action_meanings()[1] == "FIRE"
assert len(env.unwrapped.get_action_meanings()) >= 3
def reset(self, **kwargs: Any) -> tuple[Any, dict]:
_, _, return_info = _parse_reset_result(self.env.reset(**kwargs))
obs = self.env.step(1)[0]
return obs, {}
class WarpFrame(gym.ObservationWrapper):
"""Warp frames to 84x84 as done in the Nature paper and later work.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
self.size = 84
obs_space = env.observation_space
assert isinstance(obs_space, gym.spaces.Box)
obs_space_dtype = get_space_dtype(obs_space)
self.observation_space = gym.spaces.Box(
low=np.min(obs_space.low),
high=np.max(obs_space.high),
shape=(self.size, self.size),
dtype=obs_space_dtype,
)
def observation(self, frame: np.ndarray) -> np.ndarray:
"""Returns the current observation from a frame."""
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
return cv2.resize(frame, (self.size, self.size), interpolation=cv2.INTER_AREA)
class ScaledFloatFrame(gym.ObservationWrapper):
"""Normalize observations to 0~1.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
obs_space = env.observation_space
assert isinstance(obs_space, gym.spaces.Box)
low = np.min(obs_space.low)
high = np.max(obs_space.high)
self.bias = low
self.scale = high - low
self.observation_space = gym.spaces.Box(
low=0.0,
high=1.0,
shape=obs_space.shape,
dtype=np.float32,
)
def observation(self, observation: np.ndarray) -> np.ndarray:
return (observation - self.bias) / self.scale
class ClipRewardEnv(gym.RewardWrapper):
"""clips the reward to {+1, 0, -1} by its sign.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env: gym.Env) -> None:
super().__init__(env)
self.reward_range = (-1, 1)
def reward(self, reward: SupportsFloat) -> int:
"""Bin reward to {+1, 0, -1} by its sign. Note: np.sign(0) == 0."""
return np.sign(float(reward))
class FrameStack(gym.Wrapper):
"""Stack n_frames last frames.
:param gym.Env env: the environment to wrap.
:param int n_frames: the number of frames to stack.
"""
def __init__(self, env: gym.Env, n_frames: int) -> None:
super().__init__(env)
self.n_frames: int = n_frames
self.frames: deque[tuple[Any, ...]] = deque([], maxlen=n_frames)
obs_space = env.observation_space
obs_space_shape = env.observation_space.shape
assert obs_space_shape is not None
shape = (n_frames, *obs_space_shape)
assert isinstance(obs_space, gym.spaces.Box)
obs_space_dtype = get_space_dtype(obs_space)
self.observation_space = gym.spaces.Box(
low=np.min(obs_space.low),
high=np.max(obs_space.high),
shape=shape,
dtype=obs_space_dtype,
)
def reset(self, **kwargs: Any) -> tuple[np.ndarray, dict]:
obs, info, return_info = _parse_reset_result(self.env.reset(**kwargs))
for _ in range(self.n_frames):
self.frames.append(obs)
return (self._get_ob(), info) if return_info else (self._get_ob(), {})
def step(self, action: Any) -> tuple[np.ndarray, float, bool, bool, dict[str, Any]]:
step_result = self.env.step(action)
done: bool
if len(step_result) == 4:
obs, reward, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation)
new_step_api = False
else:
obs, reward, term, trunc, info = step_result
new_step_api = True
self.frames.append(obs)
reward = float(reward)
if new_step_api:
return self._get_ob(), reward, term, trunc, info
return self._get_ob(), reward, done, info.get("TimeLimit.truncated", False), info
def _get_ob(self) -> np.ndarray:
# the original wrapper use `LazyFrames` but since we use np buffer,
# it has no effect
return np.stack(self.frames, axis=0)
def wrap_deepmind(
env: gym.Env,
episode_life: bool = True,
clip_rewards: bool = True,
frame_stack: int = 4,
scale: bool = False,
warp_frame: bool = True,
) -> (
MaxAndSkipEnv
| EpisodicLifeEnv
| FireResetEnv
| WarpFrame
| ScaledFloatFrame
| ClipRewardEnv
| FrameStack
):
"""Configure environment for DeepMind-style Atari.
The observation is channel-first: (c, h, w) instead of (h, w, c).
:param env: the Atari environment to wrap.
:param bool episode_life: wrap the episode life wrapper.
:param bool clip_rewards: wrap the reward clipping wrapper.
:param int frame_stack: wrap the frame stacking wrapper.
:param bool scale: wrap the scaling observation wrapper.
:param bool warp_frame: wrap the grayscale + resize observation wrapper.
:return: the wrapped atari environment.
"""
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)
assert hasattr(env.unwrapped, "get_action_meanings") # for mypy
wrapped_env: MaxAndSkipEnv | EpisodicLifeEnv | FireResetEnv | WarpFrame | ScaledFloatFrame | ClipRewardEnv | FrameStack = (
env
)
if episode_life:
wrapped_env = EpisodicLifeEnv(wrapped_env)
if "FIRE" in env.unwrapped.get_action_meanings():
wrapped_env = FireResetEnv(wrapped_env)
if warp_frame:
wrapped_env = WarpFrame(wrapped_env)
if scale:
wrapped_env = ScaledFloatFrame(wrapped_env)
if clip_rewards:
wrapped_env = ClipRewardEnv(wrapped_env)
if frame_stack:
wrapped_env = FrameStack(wrapped_env, frame_stack)
return wrapped_env
def make_atari_env(
task: str,
seed: int,
training_num: int,
test_num: int,
scale: int | bool = False,
frame_stack: int = 4,
) -> tuple[Env, BaseVectorEnv, BaseVectorEnv]:
"""Wrapper function for Atari env.
If EnvPool is installed, it will automatically switch to EnvPool's Atari env.
:return: a tuple of (single env, training envs, test envs).
"""
env_factory = AtariEnvFactory(task, seed, seed + training_num, frame_stack, scale=bool(scale))
envs = env_factory.create_envs(training_num, test_num)
return envs.env, envs.train_envs, envs.test_envs
class AtariEnvFactory(EnvFactoryRegistered):
def __init__(
self,
task: str,
train_seed: int,
test_seed: int,
frame_stack: int,
scale: bool = False,
use_envpool_if_available: bool = True,
venv_type: VectorEnvType = VectorEnvType.SUBPROC_SHARED_MEM_AUTO,
) -> None:
assert "NoFrameskip" in task
self.frame_stack = frame_stack
self.scale = scale
envpool_factory = None
if use_envpool_if_available:
if envpool_is_available:
envpool_factory = self.EnvPoolFactoryAtari(self)
log.info("Using envpool, because it available")
else:
log.info("Not using envpool, because it is not available")
super().__init__(
task=task,
train_seed=train_seed,
test_seed=test_seed,
venv_type=venv_type,
envpool_factory=envpool_factory,
)
def create_env(self, mode: EnvMode) -> gym.Env:
env = super().create_env(mode)
is_train = mode == EnvMode.TRAIN
return wrap_deepmind(
env,
episode_life=is_train,
clip_rewards=is_train,
frame_stack=self.frame_stack,
scale=self.scale,
)
class EnvPoolFactoryAtari(EnvPoolFactory):
"""Atari-specific envpool creation.
Since envpool internally handles the functions that are implemented through the wrappers in `wrap_deepmind`,
it sets the creation keyword arguments accordingly.
"""
def __init__(self, parent: "AtariEnvFactory") -> None:
self.parent = parent
if self.parent.scale:
warnings.warn(
"EnvPool does not include ScaledFloatFrame wrapper, "
"please compensate by scaling inside your network's forward function (e.g. `x = x / 255.0` for Atari)",
)
def _transform_task(self, task: str) -> str:
task = super()._transform_task(task)
# TODO: Maybe warn user, explain why this is needed
return task.replace("NoFrameskip-v4", "-v5")
def _transform_kwargs(self, kwargs: dict, mode: EnvMode) -> dict:
kwargs = super()._transform_kwargs(kwargs, mode)
is_train = mode == EnvMode.TRAIN
kwargs["reward_clip"] = is_train
kwargs["episodic_life"] = is_train
kwargs["stack_num"] = self.parent.frame_stack
return kwargs
class AtariEpochStopCallback(EpochStopCallback):
def __init__(self, task: str) -> None:
self.task = task
def should_stop(self, mean_rewards: float, context: TrainingContext) -> bool:
env = context.envs.env
if env.spec and env.spec.reward_threshold:
return mean_rewards >= env.spec.reward_threshold
if "Pong" in self.task:
return mean_rewards >= 20
return False
|