File size: 16,892 Bytes
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
from typing import Any, Self, TypeVar, cast

import h5py
import numpy as np

from tianshou.data import Batch
from tianshou.data.batch import alloc_by_keys_diff, create_value
from tianshou.data.types import RolloutBatchProtocol
from tianshou.data.utils.converter import from_hdf5, to_hdf5

TBuffer = TypeVar("TBuffer", bound="ReplayBuffer")


class ReplayBuffer:
    """:class:`~tianshou.data.ReplayBuffer` stores data generated from interaction between the policy and environment.

    ReplayBuffer can be considered as a specialized form (or management) of Batch. It
    stores all the data in a batch with circular-queue style.

    For the example usage of ReplayBuffer, please check out Section Buffer in
    :doc:`/01_tutorials/01_concepts`.

    :param size: the maximum size of replay buffer.
    :param stack_num: the frame-stack sampling argument, should be greater than or
        equal to 1. Default to 1 (no stacking).
    :param ignore_obs_next: whether to not store obs_next. Default to False.
    :param save_only_last_obs: only save the last obs/obs_next when it has a shape
        of (timestep, ...) because of temporal stacking. Default to False.
    :param sample_avail: the parameter indicating sampling only available index
        when using frame-stack sampling method. Default to False.
    """

    _reserved_keys = (
        "obs",
        "act",
        "rew",
        "terminated",
        "truncated",
        "done",
        "obs_next",
        "info",
        "policy",
    )
    _input_keys = (
        "obs",
        "act",
        "rew",
        "terminated",
        "truncated",
        "obs_next",
        "info",
        "policy",
    )

    def __init__(
        self,
        size: int,
        stack_num: int = 1,
        ignore_obs_next: bool = False,
        save_only_last_obs: bool = False,
        sample_avail: bool = False,
        **kwargs: Any,  # otherwise PrioritizedVectorReplayBuffer will cause TypeError
    ) -> None:
        self.options: dict[str, Any] = {
            "stack_num": stack_num,
            "ignore_obs_next": ignore_obs_next,
            "save_only_last_obs": save_only_last_obs,
            "sample_avail": sample_avail,
        }
        super().__init__()
        self.maxsize = int(size)
        assert stack_num > 0, "stack_num should be greater than 0"
        self.stack_num = stack_num
        self._indices = np.arange(size)
        self._save_obs_next = not ignore_obs_next
        self._save_only_last_obs = save_only_last_obs
        self._sample_avail = sample_avail
        self._meta = cast(RolloutBatchProtocol, Batch())
        self._ep_rew: float | np.ndarray
        self.reset()

    def __len__(self) -> int:
        """Return len(self)."""
        return self._size

    def __repr__(self) -> str:
        """Return str(self)."""
        return self.__class__.__name__ + self._meta.__repr__()[5:]

    def __getattr__(self, key: str) -> Any:
        """Return self.key."""
        try:
            return self._meta[key]
        except KeyError as exception:
            raise AttributeError from exception

    def __setstate__(self, state: dict[str, Any]) -> None:
        """Unpickling interface.

        We need it because pickling buffer does not work out-of-the-box
        ("buffer.__getattr__" is customized).
        """
        self.__dict__.update(state)

    def __setattr__(self, key: str, value: Any) -> None:
        """Set self.key = value."""
        assert key not in self._reserved_keys, f"key '{key}' is reserved and cannot be assigned"
        super().__setattr__(key, value)

    def save_hdf5(self, path: str, compression: str | None = None) -> None:
        """Save replay buffer to HDF5 file."""
        with h5py.File(path, "w") as f:
            to_hdf5(self.__dict__, f, compression=compression)

    @classmethod
    def load_hdf5(cls, path: str, device: str | None = None) -> Self:
        """Load replay buffer from HDF5 file."""
        with h5py.File(path, "r") as f:
            buf = cls.__new__(cls)
            buf.__setstate__(from_hdf5(f, device=device))  # type: ignore
        return buf

    @classmethod
    def from_data(
        cls,
        obs: h5py.Dataset,
        act: h5py.Dataset,
        rew: h5py.Dataset,
        terminated: h5py.Dataset,
        truncated: h5py.Dataset,
        done: h5py.Dataset,
        obs_next: h5py.Dataset,
    ) -> Self:
        size = len(obs)
        assert all(
            len(dset) == size for dset in [obs, act, rew, terminated, truncated, done, obs_next]
        ), "Lengths of all hdf5 datasets need to be equal."
        buf = cls(size)
        if size == 0:
            return buf
        batch = Batch(
            obs=obs,
            act=act,
            rew=rew,
            terminated=terminated,
            truncated=truncated,
            done=done,
            obs_next=obs_next,
        )
        batch = cast(RolloutBatchProtocol, batch)
        buf.set_batch(batch)
        buf._size = size
        return buf

    def reset(self, keep_statistics: bool = False) -> None:
        """Clear all the data in replay buffer and episode statistics."""
        self.last_index = np.array([0])
        self._index = self._size = 0
        if not keep_statistics:
            self._ep_rew, self._ep_len, self._ep_idx = 0.0, 0, 0

    def set_batch(self, batch: RolloutBatchProtocol) -> None:
        """Manually choose the batch you want the ReplayBuffer to manage."""
        assert len(batch) == self.maxsize and set(batch.keys()).issubset(
            self._reserved_keys,
        ), "Input batch doesn't meet ReplayBuffer's data form requirement."
        self._meta = batch

    def unfinished_index(self) -> np.ndarray:
        """Return the index of unfinished episode."""
        last = (self._index - 1) % self._size if self._size else 0
        return np.array([last] if not self.done[last] and self._size else [], int)

    def prev(self, index: int | np.ndarray) -> np.ndarray:
        """Return the index of preceding step within the same episode if it exists.
        If it does not exist (because it is the first index within the episode),
        the index remains unmodified.
        """
        index = (index - 1) % self._size  # compute preceding index with wrap-around
        # end_flag will be 1 if the previous index is the last step of an episode or
        # if it is the very last index of the buffer (wrap-around case), and 0 otherwise
        end_flag = self.done[index] | (index == self.last_index[0])
        return (index + end_flag) % self._size

    def next(self, index: int | np.ndarray) -> np.ndarray:
        """Return the index of next step if there is a next step within the episode.
        If there isn't a next step, the index remains unmodified.
        """
        end_flag = self.done[index] | (index == self.last_index[0])
        return (index + (1 - end_flag)) % self._size

    def update(self, buffer: "ReplayBuffer") -> np.ndarray:
        """Move the data from the given buffer to current buffer.

        Return the updated indices. If update fails, return an empty array.
        """
        if len(buffer) == 0 or self.maxsize == 0:
            return np.array([], int)
        stack_num, buffer.stack_num = buffer.stack_num, 1
        from_indices = buffer.sample_indices(0)  # get all available indices
        buffer.stack_num = stack_num
        if len(from_indices) == 0:
            return np.array([], int)
        to_indices = []
        for _ in range(len(from_indices)):
            to_indices.append(self._index)
            self.last_index[0] = self._index
            self._index = (self._index + 1) % self.maxsize
            self._size = min(self._size + 1, self.maxsize)
        to_indices = np.array(to_indices)
        if self._meta.is_empty():
            self._meta = create_value(buffer._meta, self.maxsize, stack=False)  # type: ignore
        self._meta[to_indices] = buffer._meta[from_indices]
        return to_indices

    def _add_index(
        self,
        rew: float | np.ndarray,
        done: bool,
    ) -> tuple[int, float | np.ndarray, int, int]:
        """Maintain the buffer's state after adding one data batch.

        Return (index_to_be_modified, episode_reward, episode_length,
        episode_start_index).
        """
        self.last_index[0] = ptr = self._index
        self._size = min(self._size + 1, self.maxsize)
        self._index = (self._index + 1) % self.maxsize

        self._ep_rew += rew
        self._ep_len += 1

        if done:
            result = ptr, self._ep_rew, self._ep_len, self._ep_idx
            self._ep_rew, self._ep_len, self._ep_idx = 0.0, 0, self._index
            return result
        return ptr, self._ep_rew * 0.0, 0, self._ep_idx

    def add(
        self,
        batch: RolloutBatchProtocol,
        buffer_ids: np.ndarray | list[int] | None = None,
    ) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
        """Add a batch of data into replay buffer.

        :param batch: the input data batch. "obs", "act", "rew",
            "terminated", "truncated" are required keys.
        :param buffer_ids: to make consistent with other buffer's add function; if it
            is not None, we assume the input batch's first dimension is always 1.

        Return (current_index, episode_reward, episode_length, episode_start_index). If
        the episode is not finished, the return value of episode_length and
        episode_reward is 0.
        """
        # preprocess batch
        new_batch = Batch()
        for key in batch.get_keys():
            new_batch.__dict__[key] = batch[key]
        batch = new_batch
        batch.__dict__["done"] = np.logical_or(batch.terminated, batch.truncated)
        assert {"obs", "act", "rew", "terminated", "truncated", "done"}.issubset(
            batch.get_keys(),
        )  # important to do after preprocess batch
        stacked_batch = buffer_ids is not None
        if stacked_batch:
            assert len(batch) == 1
        if self._save_only_last_obs:
            batch.obs = batch.obs[:, -1] if stacked_batch else batch.obs[-1]
        if not self._save_obs_next:
            batch.pop("obs_next", None)
        elif self._save_only_last_obs:
            batch.obs_next = batch.obs_next[:, -1] if stacked_batch else batch.obs_next[-1]
        # get ptr
        if stacked_batch:
            rew, done = batch.rew[0], batch.done[0]
        else:
            rew, done = batch.rew, batch.done
        ptr, ep_rew, ep_len, ep_idx = (np.array([x]) for x in self._add_index(rew, done))
        try:
            self._meta[ptr] = batch
        except ValueError:
            stack = not stacked_batch
            batch.rew = batch.rew.astype(float)
            batch.done = batch.done.astype(bool)
            batch.terminated = batch.terminated.astype(bool)
            batch.truncated = batch.truncated.astype(bool)
            if self._meta.is_empty():
                self._meta = create_value(batch, self.maxsize, stack)  # type: ignore
            else:  # dynamic key pops up in batch
                alloc_by_keys_diff(self._meta, batch, self.maxsize, stack)
            self._meta[ptr] = batch
        return ptr, ep_rew, ep_len, ep_idx

    def sample_indices(self, batch_size: int | None) -> np.ndarray:
        """Get a random sample of index with size = batch_size.

        Return all available indices in the buffer if batch_size is 0; return an empty
        numpy array if batch_size < 0 or no available index can be sampled.

        :param batch_size: the number of indices to be sampled. If None, it will be set
            to the length of the buffer (i.e. return all available indices in a
            random order).
        """
        if batch_size is None:
            batch_size = len(self)
        if self.stack_num == 1 or not self._sample_avail:  # most often case
            if batch_size > 0:
                return np.random.choice(self._size, batch_size)
            # TODO: is this behavior really desired?
            if batch_size == 0:  # construct current available indices
                return np.concatenate([np.arange(self._index, self._size), np.arange(self._index)])
            return np.array([], int)
        # TODO: raise error on negative batch_size instead?
        if batch_size < 0:
            return np.array([], int)
        # TODO: simplify this code - shouldn't have such a large if-else
        #  with many returns for handling different stack nums.
        #  It is also not clear whether this is really necessary - frame stacking usually is handled
        #  by environment wrappers (e.g. FrameStack) and not by the replay buffer.
        all_indices = prev_indices = np.concatenate(
            [np.arange(self._index, self._size), np.arange(self._index)],
        )
        for _ in range(self.stack_num - 2):
            prev_indices = self.prev(prev_indices)
        all_indices = all_indices[prev_indices != self.prev(prev_indices)]
        if batch_size > 0:
            return np.random.choice(all_indices, batch_size)
        return all_indices

    def sample(self, batch_size: int | None) -> tuple[RolloutBatchProtocol, np.ndarray]:
        """Get a random sample from buffer with size = batch_size.

        Return all the data in the buffer if batch_size is 0.

        :return: Sample data and its corresponding index inside the buffer.
        """
        indices = self.sample_indices(batch_size)
        return self[indices], indices

    def get(
        self,
        index: int | list[int] | np.ndarray,
        key: str,
        default_value: Any = None,
        stack_num: int | None = None,
    ) -> Batch | np.ndarray:
        """Return the stacked result.

        E.g., if you set ``key = "obs", stack_num = 4, index = t``, it returns the
        stacked result as ``[obs[t-3], obs[t-2], obs[t-1], obs[t]]``.

        :param index: the index for getting stacked data.
        :param str key: the key to get, should be one of the reserved_keys.
        :param default_value: if the given key's data is not found and default_value is
            set, return this default_value.
        :param stack_num: Default to self.stack_num.
        """
        if key not in self._meta and default_value is not None:
            return default_value
        val = self._meta[key]
        if stack_num is None:
            stack_num = self.stack_num
        try:
            if stack_num == 1:  # the most common case
                return val[index]

            stack = list[Any]()
            indices = np.array(index) if isinstance(index, list) else index
            # NOTE: stack_num > 1, so the range is not empty and indices is turned into
            # np.ndarray by self.prev
            for _ in range(stack_num):
                stack = [val[indices], *stack]
                indices = self.prev(indices)
            indices = cast(np.ndarray, indices)
            if isinstance(val, Batch):
                return Batch.stack(stack, axis=indices.ndim)
            return np.stack(stack, axis=indices.ndim)

        except IndexError as exception:
            if not (isinstance(val, Batch) and val.is_empty()):
                raise exception  # val != Batch()
            return Batch()

    def __getitem__(self, index: slice | int | list[int] | np.ndarray) -> RolloutBatchProtocol:
        """Return a data batch: self[index].

        If stack_num is larger than 1, return the stacked obs and obs_next with shape
        (batch, len, ...).
        """
        if isinstance(index, slice):  # change slice to np array
            # buffer[:] will get all available data
            indices = (
                self.sample_indices(0)
                if index == slice(None)
                else self._indices[: len(self)][index]
            )
        else:
            indices = index  # type: ignore
        # raise KeyError first instead of AttributeError,
        # to support np.array([ReplayBuffer()])
        obs = self.get(indices, "obs")
        if self._save_obs_next:
            obs_next = self.get(indices, "obs_next", Batch())
        else:
            obs_next = self.get(self.next(indices), "obs", Batch())
        batch_dict = {
            "obs": obs,
            "act": self.act[indices],
            "rew": self.rew[indices],
            "terminated": self.terminated[indices],
            "truncated": self.truncated[indices],
            "done": self.done[indices],
            "obs_next": obs_next,
            "info": self.get(indices, "info", Batch()),
            # TODO: what's the use of this key?
            "policy": self.get(indices, "policy", Batch()),
        }
        for key in self._meta.__dict__:
            if key not in self._input_keys:
                batch_dict[key] = self._meta[key][indices]
        return cast(RolloutBatchProtocol, Batch(batch_dict))