File size: 46,754 Bytes
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
import os
import pickle
from abc import abstractmethod
from collections.abc import Sequence
from copy import deepcopy
from dataclasses import dataclass
from pprint import pformat
from typing import TYPE_CHECKING, Any, Self, Union, cast

import numpy as np
import torch

from tianshou.data import Collector, InfoStats
from tianshou.env import BaseVectorEnv
from tianshou.highlevel.agent import (
    A2CAgentFactory,
    AgentFactory,
    DDPGAgentFactory,
    DiscreteSACAgentFactory,
    DQNAgentFactory,
    IQNAgentFactory,
    NPGAgentFactory,
    PGAgentFactory,
    PPOAgentFactory,
    REDQAgentFactory,
    SACAgentFactory,
    TD3AgentFactory,
    TRPOAgentFactory,
)
from tianshou.highlevel.config import SamplingConfig
from tianshou.highlevel.env import EnvFactory
from tianshou.highlevel.logger import LoggerFactory, LoggerFactoryDefault, TLogger
from tianshou.highlevel.module.actor import (
    ActorFactory,
    ActorFactoryDefault,
    ActorFactoryTransientStorageDecorator,
    ActorFuture,
    ActorFutureProviderProtocol,
    ContinuousActorType,
    IntermediateModuleFactoryFromActorFactory,
)
from tianshou.highlevel.module.core import (
    TDevice,
)
from tianshou.highlevel.module.critic import (
    CriticEnsembleFactory,
    CriticEnsembleFactoryDefault,
    CriticFactory,
    CriticFactoryDefault,
    CriticFactoryReuseActor,
)
from tianshou.highlevel.module.intermediate import IntermediateModuleFactory
from tianshou.highlevel.module.special import ImplicitQuantileNetworkFactory
from tianshou.highlevel.optim import OptimizerFactory, OptimizerFactoryAdam
from tianshou.highlevel.params.policy_params import (
    A2CParams,
    DDPGParams,
    DiscreteSACParams,
    DQNParams,
    IQNParams,
    NPGParams,
    PGParams,
    PPOParams,
    REDQParams,
    SACParams,
    TD3Params,
    TRPOParams,
)
from tianshou.highlevel.params.policy_wrapper import PolicyWrapperFactory
from tianshou.highlevel.persistence import (
    PersistenceGroup,
    PolicyPersistence,
)
from tianshou.highlevel.trainer import (
    EpochStopCallback,
    EpochTestCallback,
    EpochTrainCallback,
    TrainerCallbacks,
)
from tianshou.highlevel.world import World
from tianshou.policy import BasePolicy
from tianshou.utils import LazyLogger, deprecation, logging
from tianshou.utils.logging import datetime_tag
from tianshou.utils.net.common import ModuleType
from tianshou.utils.string import ToStringMixin

if TYPE_CHECKING:
    from tianshou.evaluation.launcher import ExpLauncher, RegisteredExpLauncher

log = logging.getLogger(__name__)


@dataclass
class ExperimentConfig:
    """Generic config for setting up the experiment, not RL or training specific."""

    seed: int = 42
    """The random seed with which to initialize random number generators."""
    device: TDevice = "cuda" if torch.cuda.is_available() else "cpu"
    """The torch device to use"""
    policy_restore_directory: str | None = None
    """Directory from which to load the policy neural network parameters (persistence directory of a previous run)"""
    train: bool = True
    """Whether to perform training"""
    watch: bool = True
    """Whether to watch agent performance (after training)"""
    watch_num_episodes: int = 10
    """Number of episodes for which to watch performance (if `watch` is enabled)"""
    watch_render: float = 0.0
    """Milliseconds between rendered frames when watching agent performance (if `watch` is enabled)"""
    persistence_base_dir: str = "log"
    """Base directory in which experiment data is to be stored. Every experiment run will create a subdirectory
    in this directory based on the run's experiment name"""
    persistence_enabled: bool = True
    """Whether persistence is enabled, allowing files to be stored"""
    log_file_enabled: bool = True
    """Whether to write to a log file; has no effect if `persistence_enabled` is False.
    Disable this if you have externally configured log file generation."""
    policy_persistence_mode: PolicyPersistence.Mode = PolicyPersistence.Mode.POLICY
    """Controls the way in which the policy is persisted"""


@dataclass
class ExperimentResult:
    """Contains the results of an experiment."""

    world: World
    """contains all the essential instances of the experiment"""
    trainer_result: InfoStats | None
    """dataclass of results as returned by the trainer (if any)"""


class Experiment(ToStringMixin):
    """Represents a reinforcement learning experiment.

    An experiment is composed only of configuration and factory objects, which themselves
    should be designed to contain only configuration. Therefore, experiments can easily
    be stored/pickled and later restored without any problems.
    """

    LOG_FILENAME = "log.txt"
    EXPERIMENT_PICKLE_FILENAME = "experiment.pkl"

    def __init__(
        self,
        config: ExperimentConfig,
        env_factory: EnvFactory,
        agent_factory: AgentFactory,
        sampling_config: SamplingConfig,
        name: str,
        logger_factory: LoggerFactory | None = None,
    ):
        if logger_factory is None:
            logger_factory = LoggerFactoryDefault()
        self.config = config
        self.sampling_config = sampling_config
        self.env_factory = env_factory
        self.agent_factory = agent_factory
        self.logger_factory = logger_factory
        self.name = name

    @classmethod
    def from_directory(cls, directory: str, restore_policy: bool = True) -> "Experiment":
        """Restores an experiment from a previously stored pickle.

        :param directory: persistence directory of a previous run, in which a pickled experiment is found
        :param restore_policy: whether the experiment shall be configured to restore the policy that was
            persisted in the given directory
        """
        with open(os.path.join(directory, cls.EXPERIMENT_PICKLE_FILENAME), "rb") as f:
            experiment: Experiment = pickle.load(f)
        if restore_policy:
            experiment.config.policy_restore_directory = directory
        return experiment

    def get_seeding_info_as_str(self) -> str:
        """Returns information on the seeds used in the experiment as a string.

        This can be useful for creating unique experiment names based on seeds, e.g.
        A typical example is to do `experiment.name = f"{experiment.name}_{experiment.get_seeding_info_as_str()}"`.
        """
        return "_".join(
            [
                f"exp_seed={self.config.seed}",
                f"train_seed={self.sampling_config.train_seed}",
                f"test_seed={self.sampling_config.test_seed}",
            ],
        )

    def _set_seed(self) -> None:
        seed = self.config.seed
        log.info(f"Setting random seed {seed}")
        np.random.seed(seed)
        torch.manual_seed(seed)

    def _build_config_dict(self) -> dict:
        return {"experiment": self.pprints()}

    def save(self, directory: str) -> None:
        path = os.path.join(directory, self.EXPERIMENT_PICKLE_FILENAME)
        log.info(
            f"Saving serialized experiment in {path}; can be restored via Experiment.from_directory('{directory}')",
        )
        with open(path, "wb") as f:
            pickle.dump(self, f)

    def run(
        self,
        run_name: str | None = None,
        logger_run_id: str | None = None,
        raise_error_on_dirname_collision: bool = True,
        **kwargs: dict[str, Any],
    ) -> ExperimentResult:
        """Run the experiment and return the results.

        :param run_name: Defines a name for this run of the experiment, which determines
            the subdirectory (within the persistence base directory) where all results will be saved.
            If None, the experiment's name will be used.
            The name may contain path separators (i.e. `os.path.sep`, as used by `os.path.join`), in which case
            a nested directory structure will be created.
        :param logger_run_id: Run identifier to use for logger initialization/resumption (applies when
            using wandb, in particular).
        :param raise_error_on_dirname_collision: set to `False` e.g., when continuing a previously executed
            experiment with the same name.
        :param kwargs: for backward compatibility with old parameter names only
        :return:
        """
        # backward compatibility
        _experiment_name = kwargs.pop("experiment_name", None)
        if _experiment_name is not None:
            run_name = cast(str, _experiment_name)
            deprecation(
                "Parameter run_name should now be used instead of experiment_name. "
                "Support for experiment_name will be removed in the future.",
            )
        assert len(kwargs) == 0, f"Received unexpected arguments: {kwargs}"

        if run_name is None:
            run_name = self.name

        # initialize persistence directory
        use_persistence = self.config.persistence_enabled
        persistence_dir = os.path.join(self.config.persistence_base_dir, run_name)
        if use_persistence:
            os.makedirs(persistence_dir, exist_ok=not raise_error_on_dirname_collision)

        with logging.FileLoggerContext(
            os.path.join(persistence_dir, self.LOG_FILENAME),
            enabled=use_persistence and self.config.log_file_enabled,
        ):
            # log initial information
            log.info(f"Running experiment (name='{run_name}'):\n{self.pprints()}")
            log.info(f"Working directory: {os.getcwd()}")

            self._set_seed()

            # create environments
            envs = self.env_factory.create_envs(
                self.sampling_config.num_train_envs,
                self.sampling_config.num_test_envs,
                create_watch_env=self.config.watch,
            )
            log.info(f"Created {envs}")

            # initialize persistence
            additional_persistence = PersistenceGroup(*envs.persistence, enabled=use_persistence)
            policy_persistence = PolicyPersistence(
                additional_persistence,
                enabled=use_persistence,
                mode=self.config.policy_persistence_mode,
            )
            if use_persistence:
                log.info(f"Persistence directory: {os.path.abspath(persistence_dir)}")
                self.save(persistence_dir)

            # initialize logger
            full_config = self._build_config_dict()
            full_config.update(envs.info())
            logger: TLogger
            if use_persistence:
                logger = self.logger_factory.create_logger(
                    log_dir=persistence_dir,
                    experiment_name=run_name,
                    run_id=logger_run_id,
                    config_dict=full_config,
                )
            else:
                logger = LazyLogger()

            # create policy and collectors
            log.info("Creating policy")
            policy = self.agent_factory.create_policy(envs, self.config.device)
            log.info("Creating collectors")
            train_collector, test_collector = self.agent_factory.create_train_test_collector(
                policy,
                envs,
            )

            # create context object with all relevant instances (except trainer; added later)
            world = World(
                envs=envs,
                policy=policy,
                train_collector=train_collector,
                test_collector=test_collector,
                logger=logger,
                persist_directory=persistence_dir,
                restore_directory=self.config.policy_restore_directory,
            )

            # restore policy parameters if applicable
            if self.config.policy_restore_directory:
                policy_persistence.restore(
                    policy,
                    world,
                    self.config.device,
                )

            # train policy
            log.info("Starting training")
            trainer_result: InfoStats | None = None
            if self.config.train:
                trainer = self.agent_factory.create_trainer(world, policy_persistence)
                world.trainer = trainer
                trainer_result = trainer.run()
                log.info(f"Training result:\n{pformat(trainer_result)}")

            # watch agent performance
            if self.config.watch:
                assert envs.watch_env is not None
                log.info("Watching agent performance")
                self._watch_agent(
                    self.config.watch_num_episodes,
                    policy,
                    envs.watch_env,
                    self.config.watch_render,
                )

            return ExperimentResult(world=world, trainer_result=trainer_result)

    @staticmethod
    def _watch_agent(
        num_episodes: int,
        policy: BasePolicy,
        env: BaseVectorEnv,
        render: float,
    ) -> None:
        collector = Collector(policy, env)
        collector.reset()
        result = collector.collect(n_episode=num_episodes, render=render)
        assert result.returns_stat is not None  # for mypy
        assert result.lens_stat is not None  # for mypy
        log.info(
            f"Watched episodes: mean reward={result.returns_stat.mean}, mean episode length={result.lens_stat.mean}",
        )


class ExperimentCollection:
    """Shallow wrapper around a list of experiments providing a simple interface for running them with a launcher."""

    def __init__(self, experiments: list[Experiment]):
        self.experiments = experiments

    def run(
        self,
        launcher: Union["ExpLauncher", "RegisteredExpLauncher"],
    ) -> list[InfoStats | None]:
        from tianshou.evaluation.launcher import RegisteredExpLauncher

        if isinstance(launcher, RegisteredExpLauncher):
            launcher = launcher.create_launcher()
        return launcher.launch(experiments=self.experiments)


class ExperimentBuilder:
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        if experiment_config is None:
            experiment_config = ExperimentConfig()
        if sampling_config is None:
            sampling_config = SamplingConfig()
        self._config = experiment_config
        self._env_factory = env_factory
        self._sampling_config = sampling_config
        self._logger_factory: LoggerFactory | None = None
        self._optim_factory: OptimizerFactory | None = None
        self._policy_wrapper_factory: PolicyWrapperFactory | None = None
        self._trainer_callbacks: TrainerCallbacks = TrainerCallbacks()
        self._name: str = self.__class__.__name__.replace("Builder", "") + "_" + datetime_tag()

    def copy(self) -> Self:
        return deepcopy(self)

    @property
    def experiment_config(self) -> ExperimentConfig:
        return self._config

    @experiment_config.setter
    def experiment_config(self, experiment_config: ExperimentConfig) -> None:
        self._config = experiment_config

    @property
    def sampling_config(self) -> SamplingConfig:
        return self._sampling_config

    @sampling_config.setter
    def sampling_config(self, sampling_config: SamplingConfig) -> None:
        self._sampling_config = sampling_config

    def with_logger_factory(self, logger_factory: LoggerFactory) -> Self:
        """Allows to customize the logger factory to use.

        If this method is not called, the default logger factory :class:`LoggerFactoryDefault` will be used.

        :param logger_factory: the factory to use
        :return: the builder
        """
        self._logger_factory = logger_factory
        return self

    def with_policy_wrapper_factory(self, policy_wrapper_factory: PolicyWrapperFactory) -> Self:
        """Allows to define a wrapper around the policy that is created, extending the original policy.

        :param policy_wrapper_factory: the factory for the wrapper
        :return: the builder
        """
        self._policy_wrapper_factory = policy_wrapper_factory
        return self

    def with_optim_factory(self, optim_factory: OptimizerFactory) -> Self:
        """Allows to customize the gradient-based optimizer to use.

        By default, :class:`OptimizerFactoryAdam` will be used with default parameters.

        :param optim_factory: the optimizer factory
        :return: the builder
        """
        self._optim_factory = optim_factory
        return self

    def with_optim_factory_default(
        self,
        betas: tuple[float, float] = (0.9, 0.999),
        eps: float = 1e-08,
        weight_decay: float = 0,
    ) -> Self:
        """Configures the use of the default optimizer, Adam, with the given parameters.

        :param betas: coefficients used for computing running averages of gradient and its square
        :param eps: term added to the denominator to improve numerical stability
        :param weight_decay: weight decay (L2 penalty)
        :return: the builder
        """
        self._optim_factory = OptimizerFactoryAdam(betas=betas, eps=eps, weight_decay=weight_decay)
        return self

    def with_epoch_train_callback(self, callback: EpochTrainCallback) -> Self:
        """Allows to define a callback function which is called at the beginning of every epoch during training.

        :param callback: the callback
        :return: the builder
        """
        self._trainer_callbacks.epoch_train_callback = callback
        return self

    def with_epoch_test_callback(self, callback: EpochTestCallback) -> Self:
        """Allows to define a callback function which is called at the beginning of testing in each epoch.

        :param callback: the callback
        :return: the builder
        """
        self._trainer_callbacks.epoch_test_callback = callback
        return self

    def with_epoch_stop_callback(self, callback: EpochStopCallback) -> Self:
        """Allows to define a callback that decides whether training shall stop early.

        The callback receives the undiscounted returns of the testing result.

        :param callback: the callback
        :return: the builder
        """
        self._trainer_callbacks.epoch_stop_callback = callback
        return self

    def with_name(
        self,
        name: str,
    ) -> Self:
        """Sets the name of the experiment.

        :param name: the name to use for this experiment, which, when the experiment is run,
            will determine the storage sub-folder by default
        :return: the builder
        """
        self._name = name
        return self

    @abstractmethod
    def _create_agent_factory(self) -> AgentFactory:
        pass

    def _get_optim_factory(self) -> OptimizerFactory:
        if self._optim_factory is None:
            return OptimizerFactoryAdam()
        else:
            return self._optim_factory

    def build(self) -> Experiment:
        """Creates the experiment based on the options specified via this builder.

        :return: the experiment
        """
        agent_factory = self._create_agent_factory()
        agent_factory.set_trainer_callbacks(self._trainer_callbacks)
        if self._policy_wrapper_factory:
            agent_factory.set_policy_wrapper_factory(self._policy_wrapper_factory)
        experiment: Experiment = Experiment(
            config=self._config,
            env_factory=self._env_factory,
            agent_factory=agent_factory,
            sampling_config=self._sampling_config,
            name=self._name,
            logger_factory=self._logger_factory,
        )
        return experiment

    def build_seeded_collection(self, num_experiments: int) -> ExperimentCollection:
        """Creates a collection of experiments with non-overlapping random seeds, starting from the configured seed.

        Each experiment in the collection will have a unique name that is created from the original experiment name and the seeds used.
        """
        num_train_envs = self.sampling_config.num_train_envs

        seeded_experiments = []
        for i in range(num_experiments):
            builder = self.copy()
            builder.experiment_config.seed += i
            builder.sampling_config.train_seed += i * num_train_envs
            experiment = builder.build()
            experiment.name += f"_{experiment.get_seeding_info_as_str()}"
            seeded_experiments.append(experiment)
        return ExperimentCollection(seeded_experiments)


class _BuilderMixinActorFactory(ActorFutureProviderProtocol):
    def __init__(self, continuous_actor_type: ContinuousActorType):
        self._continuous_actor_type = continuous_actor_type
        self._actor_future = ActorFuture()
        self._actor_factory: ActorFactory | None = None

    def with_actor_factory(self, actor_factory: ActorFactory) -> Self:
        """Allows to customize the actor component via the specification of a factory.

        If this function is not called, a default actor factory (with default parameters) will be used.

        :param actor_factory: the factory to use for the creation of the actor network
        :return: the builder
        """
        self._actor_factory = actor_factory
        return self

    def _with_actor_factory_default(
        self,
        hidden_sizes: Sequence[int],
        hidden_activation: ModuleType = torch.nn.ReLU,
        continuous_unbounded: bool = False,
        continuous_conditioned_sigma: bool = False,
    ) -> Self:
        """Adds a default actor factory with the given parameters.

        :param hidden_sizes: the sequence of hidden dimensions to use in the network structure
        :param continuous_unbounded: whether, for continuous action spaces, to apply tanh activation on final logits
        :param continuous_conditioned_sigma: whether, for continuous action spaces, the standard deviation of continuous actions (sigma)
            shall be computed from the input; if False, sigma is an independent parameter.
        :return: the builder
        """
        self._actor_factory = ActorFactoryDefault(
            self._continuous_actor_type,
            hidden_sizes,
            hidden_activation=hidden_activation,
            continuous_unbounded=continuous_unbounded,
            continuous_conditioned_sigma=continuous_conditioned_sigma,
        )
        return self

    def get_actor_future(self) -> ActorFuture:
        """:return: an object, which, in the future, will contain the actor instance that is created for the experiment."""
        return self._actor_future

    def _get_actor_factory(self) -> ActorFactory:
        actor_factory: ActorFactory
        if self._actor_factory is None:
            actor_factory = ActorFactoryDefault(self._continuous_actor_type)
        else:
            actor_factory = self._actor_factory
        return ActorFactoryTransientStorageDecorator(actor_factory, self._actor_future)


class _BuilderMixinActorFactory_ContinuousGaussian(_BuilderMixinActorFactory):
    """Specialization of the actor mixin where, in the continuous case, the actor component outputs Gaussian distribution parameters."""

    def __init__(self) -> None:
        super().__init__(ContinuousActorType.GAUSSIAN)

    def with_actor_factory_default(
        self,
        hidden_sizes: Sequence[int],
        hidden_activation: ModuleType = torch.nn.ReLU,
        continuous_unbounded: bool = False,
        continuous_conditioned_sigma: bool = False,
    ) -> Self:
        """Defines use of the default actor factory, allowing its parameters it to be customized.

        The default actor factory uses an MLP-style architecture.

        :param hidden_sizes: dimensions of hidden layers used by the network
        :param hidden_activation: the activation function to use for hidden layers
        :param continuous_unbounded: whether, for continuous action spaces, to apply tanh activation on final logits
        :param continuous_conditioned_sigma: whether, for continuous action spaces, the standard deviation of continuous actions (sigma)
            shall be computed from the input; if False, sigma is an independent parameter.
        :return: the builder
        """
        return super()._with_actor_factory_default(
            hidden_sizes,
            hidden_activation=hidden_activation,
            continuous_unbounded=continuous_unbounded,
            continuous_conditioned_sigma=continuous_conditioned_sigma,
        )


class _BuilderMixinActorFactory_ContinuousDeterministic(_BuilderMixinActorFactory):
    """Specialization of the actor mixin where, in the continuous case, the actor uses a deterministic policy."""

    def __init__(self) -> None:
        super().__init__(ContinuousActorType.DETERMINISTIC)

    def with_actor_factory_default(
        self,
        hidden_sizes: Sequence[int],
        hidden_activation: ModuleType = torch.nn.ReLU,
    ) -> Self:
        """Defines use of the default actor factory, allowing its parameters it to be customized.

        The default actor factory uses an MLP-style architecture.

        :param hidden_sizes: dimensions of hidden layers used by the network
        :param hidden_activation: the activation function to use for hidden layers
        :return: the builder
        """
        return super()._with_actor_factory_default(hidden_sizes, hidden_activation)


class _BuilderMixinCriticsFactory:
    def __init__(self, num_critics: int, actor_future_provider: ActorFutureProviderProtocol):
        self._actor_future_provider = actor_future_provider
        self._critic_factories: list[CriticFactory | None] = [None] * num_critics

    def _with_critic_factory(self, idx: int, critic_factory: CriticFactory) -> Self:
        self._critic_factories[idx] = critic_factory
        return self

    def _with_critic_factory_default(
        self,
        idx: int,
        hidden_sizes: Sequence[int],
        hidden_activation: ModuleType = torch.nn.ReLU,
    ) -> Self:
        self._critic_factories[idx] = CriticFactoryDefault(
            hidden_sizes,
            hidden_activation=hidden_activation,
        )
        return self

    def _with_critic_factory_use_actor(self, idx: int) -> Self:
        self._critic_factories[idx] = CriticFactoryReuseActor(
            self._actor_future_provider.get_actor_future(),
        )
        return self

    def _get_critic_factory(self, idx: int) -> CriticFactory:
        factory = self._critic_factories[idx]
        if factory is None:
            return CriticFactoryDefault()
        else:
            return factory


class _BuilderMixinSingleCriticFactory(_BuilderMixinCriticsFactory):
    def __init__(self, actor_future_provider: ActorFutureProviderProtocol) -> None:
        super().__init__(1, actor_future_provider)

    def with_critic_factory(self, critic_factory: CriticFactory) -> Self:
        """Specifies that the given factory shall be used for the critic.

        :param critic_factory: the critic factory
        :return: the builder
        """
        self._with_critic_factory(0, critic_factory)
        return self

    def with_critic_factory_default(
        self,
        hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
        hidden_activation: ModuleType = torch.nn.ReLU,
    ) -> Self:
        """Makes the critic use the default, MLP-style architecture with the given parameters.

        :param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
        :param hidden_activation: the activation function to use for hidden layers
        :return: the builder
        """
        self._with_critic_factory_default(0, hidden_sizes, hidden_activation)
        return self


class _BuilderMixinSingleCriticCanUseActorFactory(_BuilderMixinSingleCriticFactory):
    def __init__(self, actor_future_provider: ActorFutureProviderProtocol) -> None:
        super().__init__(actor_future_provider)

    def with_critic_factory_use_actor(self) -> Self:
        """Makes the first critic reuse the actor's preprocessing network (parameter sharing)."""
        return self._with_critic_factory_use_actor(0)


class _BuilderMixinDualCriticFactory(_BuilderMixinCriticsFactory):
    def __init__(self, actor_future_provider: ActorFutureProviderProtocol) -> None:
        super().__init__(2, actor_future_provider)

    def with_common_critic_factory(self, critic_factory: CriticFactory) -> Self:
        """Specifies that the given factory shall be used for both critics.

        :param critic_factory: the critic factory
        :return: the builder
        """
        for i in range(len(self._critic_factories)):
            self._with_critic_factory(i, critic_factory)
        return self

    def with_common_critic_factory_default(
        self,
        hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
        hidden_activation: ModuleType = torch.nn.ReLU,
    ) -> Self:
        """Makes both critics use the default, MLP-style architecture with the given parameters.

        :param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
        :param hidden_activation: the activation function to use for hidden layers
        :return: the builder
        """
        for i in range(len(self._critic_factories)):
            self._with_critic_factory_default(i, hidden_sizes, hidden_activation)
        return self

    def with_common_critic_factory_use_actor(self) -> Self:
        """Makes both critics reuse the actor's preprocessing network (parameter sharing)."""
        for i in range(len(self._critic_factories)):
            self._with_critic_factory_use_actor(i)
        return self

    def with_critic1_factory(self, critic_factory: CriticFactory) -> Self:
        """Specifies that the given factory shall be used for the first critic.

        :param critic_factory: the critic factory
        :return: the builder
        """
        self._with_critic_factory(0, critic_factory)
        return self

    def with_critic1_factory_default(
        self,
        hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
        hidden_activation: ModuleType = torch.nn.ReLU,
    ) -> Self:
        """Makes the first critic use the default, MLP-style architecture with the given parameters.

        :param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
        :param hidden_activation: the activation function to use for hidden layers
        :return: the builder
        """
        self._with_critic_factory_default(0, hidden_sizes, hidden_activation)
        return self

    def with_critic1_factory_use_actor(self) -> Self:
        """Makes the first critic reuse the actor's preprocessing network (parameter sharing)."""
        return self._with_critic_factory_use_actor(0)

    def with_critic2_factory(self, critic_factory: CriticFactory) -> Self:
        """Specifies that the given factory shall be used for the second critic.

        :param critic_factory: the critic factory
        :return: the builder
        """
        self._with_critic_factory(1, critic_factory)
        return self

    def with_critic2_factory_default(
        self,
        hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
        hidden_activation: ModuleType = torch.nn.ReLU,
    ) -> Self:
        """Makes the second critic use the default, MLP-style architecture with the given parameters.

        :param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
        :param hidden_activation: the activation function to use for hidden layers
        :return: the builder
        """
        self._with_critic_factory_default(1, hidden_sizes, hidden_activation)
        return self

    def with_critic2_factory_use_actor(self) -> Self:
        """Makes the first critic reuse the actor's preprocessing network (parameter sharing)."""
        return self._with_critic_factory_use_actor(1)


class _BuilderMixinCriticEnsembleFactory:
    def __init__(self) -> None:
        self.critic_ensemble_factory: CriticEnsembleFactory | None = None

    def with_critic_ensemble_factory(self, factory: CriticEnsembleFactory) -> Self:
        """Specifies that the given factory shall be used for the critic ensemble.

        If unspecified, the default factory (:class:`CriticEnsembleFactoryDefault`) is used.

        :param factory: the critic ensemble factory
        :return: the builder
        """
        self.critic_ensemble_factory = factory
        return self

    def with_critic_ensemble_factory_default(
        self,
        hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
    ) -> Self:
        """Allows to customize the parameters of the default critic ensemble factory.

        :param hidden_sizes: the sequence of sizes of hidden layers in the network architecture
        :return: the builder
        """
        self.critic_ensemble_factory = CriticEnsembleFactoryDefault(hidden_sizes)
        return self

    def _get_critic_ensemble_factory(self) -> CriticEnsembleFactory:
        if self.critic_ensemble_factory is None:
            return CriticEnsembleFactoryDefault()
        else:
            return self.critic_ensemble_factory


class PGExperimentBuilder(
    ExperimentBuilder,
    _BuilderMixinActorFactory_ContinuousGaussian,
):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        _BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
        self._params: PGParams = PGParams()
        self._env_config = None

    def with_pg_params(self, params: PGParams) -> Self:
        self._params = params
        return self

    def _create_agent_factory(self) -> AgentFactory:
        return PGAgentFactory(
            self._params,
            self._sampling_config,
            self._get_actor_factory(),
            self._get_optim_factory(),
        )


class A2CExperimentBuilder(
    ExperimentBuilder,
    _BuilderMixinActorFactory_ContinuousGaussian,
    _BuilderMixinSingleCriticCanUseActorFactory,
):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        _BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
        _BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
        self._params: A2CParams = A2CParams()
        self._env_config = None

    def with_a2c_params(self, params: A2CParams) -> Self:
        self._params = params
        return self

    def _create_agent_factory(self) -> AgentFactory:
        return A2CAgentFactory(
            self._params,
            self._sampling_config,
            self._get_actor_factory(),
            self._get_critic_factory(0),
            self._get_optim_factory(),
        )


class PPOExperimentBuilder(
    ExperimentBuilder,
    _BuilderMixinActorFactory_ContinuousGaussian,
    _BuilderMixinSingleCriticCanUseActorFactory,
):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        _BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
        _BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
        self._params: PPOParams = PPOParams()

    def with_ppo_params(self, params: PPOParams) -> Self:
        self._params = params
        return self

    def _create_agent_factory(self) -> AgentFactory:
        return PPOAgentFactory(
            self._params,
            self._sampling_config,
            self._get_actor_factory(),
            self._get_critic_factory(0),
            self._get_optim_factory(),
        )


class NPGExperimentBuilder(
    ExperimentBuilder,
    _BuilderMixinActorFactory_ContinuousGaussian,
    _BuilderMixinSingleCriticCanUseActorFactory,
):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        _BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
        _BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
        self._params: NPGParams = NPGParams()

    def with_npg_params(self, params: NPGParams) -> Self:
        self._params = params
        return self

    def _create_agent_factory(self) -> AgentFactory:
        return NPGAgentFactory(
            self._params,
            self._sampling_config,
            self._get_actor_factory(),
            self._get_critic_factory(0),
            self._get_optim_factory(),
        )


class TRPOExperimentBuilder(
    ExperimentBuilder,
    _BuilderMixinActorFactory_ContinuousGaussian,
    _BuilderMixinSingleCriticCanUseActorFactory,
):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        _BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
        _BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
        self._params: TRPOParams = TRPOParams()

    def with_trpo_params(self, params: TRPOParams) -> Self:
        self._params = params
        return self

    def _create_agent_factory(self) -> AgentFactory:
        return TRPOAgentFactory(
            self._params,
            self._sampling_config,
            self._get_actor_factory(),
            self._get_critic_factory(0),
            self._get_optim_factory(),
        )


class DQNExperimentBuilder(
    ExperimentBuilder,
):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        self._params: DQNParams = DQNParams()
        self._model_factory: IntermediateModuleFactory = IntermediateModuleFactoryFromActorFactory(
            ActorFactoryDefault(ContinuousActorType.UNSUPPORTED, discrete_softmax=False),
        )

    def with_dqn_params(self, params: DQNParams) -> Self:
        self._params = params
        return self

    def with_model_factory(self, module_factory: IntermediateModuleFactory) -> Self:
        """:param module_factory: factory for a module which maps environment observations to a vector of Q-values (one for each action)
        :return: the builder
        """
        self._model_factory = module_factory
        return self

    def with_model_factory_default(
        self,
        hidden_sizes: Sequence[int],
        hidden_activation: ModuleType = torch.nn.ReLU,
    ) -> Self:
        """Allows to configure the default factory for the model of the Q function, which maps environment observations to a vector of
        Q-values (one for each action). The default model is a multi-layer perceptron.

        :param hidden_sizes: the sequence of dimensions used for hidden layers
        :param hidden_activation: the activation function to use for hidden layers (not used for the output layer)
        :return: the builder
        """
        self._model_factory = IntermediateModuleFactoryFromActorFactory(
            ActorFactoryDefault(
                ContinuousActorType.UNSUPPORTED,
                hidden_sizes=hidden_sizes,
                hidden_activation=hidden_activation,
                discrete_softmax=False,
            ),
        )
        return self

    def _create_agent_factory(self) -> AgentFactory:
        return DQNAgentFactory(
            self._params,
            self._sampling_config,
            self._model_factory,
            self._get_optim_factory(),
        )


class IQNExperimentBuilder(ExperimentBuilder):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        self._params: IQNParams = IQNParams()
        self._preprocess_network_factory: IntermediateModuleFactory = (
            IntermediateModuleFactoryFromActorFactory(
                ActorFactoryDefault(ContinuousActorType.UNSUPPORTED, discrete_softmax=False),
            )
        )

    def with_iqn_params(self, params: IQNParams) -> Self:
        self._params = params
        return self

    def with_preprocess_network_factory(self, module_factory: IntermediateModuleFactory) -> Self:
        self._preprocess_network_factory = module_factory
        return self

    def _create_agent_factory(self) -> AgentFactory:
        model_factory = ImplicitQuantileNetworkFactory(
            self._preprocess_network_factory,
            hidden_sizes=self._params.hidden_sizes,
            num_cosines=self._params.num_cosines,
        )
        return IQNAgentFactory(
            self._params,
            self._sampling_config,
            model_factory,
            self._get_optim_factory(),
        )


class DDPGExperimentBuilder(
    ExperimentBuilder,
    _BuilderMixinActorFactory_ContinuousDeterministic,
    _BuilderMixinSingleCriticCanUseActorFactory,
):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        _BuilderMixinActorFactory_ContinuousDeterministic.__init__(self)
        _BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
        self._params: DDPGParams = DDPGParams()

    def with_ddpg_params(self, params: DDPGParams) -> Self:
        self._params = params
        return self

    def _create_agent_factory(self) -> AgentFactory:
        return DDPGAgentFactory(
            self._params,
            self._sampling_config,
            self._get_actor_factory(),
            self._get_critic_factory(0),
            self._get_optim_factory(),
        )


class REDQExperimentBuilder(
    ExperimentBuilder,
    _BuilderMixinActorFactory_ContinuousGaussian,
    _BuilderMixinCriticEnsembleFactory,
):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        _BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
        _BuilderMixinCriticEnsembleFactory.__init__(self)
        self._params: REDQParams = REDQParams()

    def with_redq_params(self, params: REDQParams) -> Self:
        self._params = params
        return self

    def _create_agent_factory(self) -> AgentFactory:
        return REDQAgentFactory(
            self._params,
            self._sampling_config,
            self._get_actor_factory(),
            self._get_critic_ensemble_factory(),
            self._get_optim_factory(),
        )


class SACExperimentBuilder(
    ExperimentBuilder,
    _BuilderMixinActorFactory_ContinuousGaussian,
    _BuilderMixinDualCriticFactory,
):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        _BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
        _BuilderMixinDualCriticFactory.__init__(self, self)
        self._params: SACParams = SACParams()

    def with_sac_params(self, params: SACParams) -> Self:
        self._params = params
        return self

    def _create_agent_factory(self) -> AgentFactory:
        return SACAgentFactory(
            self._params,
            self._sampling_config,
            self._get_actor_factory(),
            self._get_critic_factory(0),
            self._get_critic_factory(1),
            self._get_optim_factory(),
        )


class DiscreteSACExperimentBuilder(
    ExperimentBuilder,
    _BuilderMixinActorFactory,
    _BuilderMixinDualCriticFactory,
):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        _BuilderMixinActorFactory.__init__(self, ContinuousActorType.UNSUPPORTED)
        _BuilderMixinDualCriticFactory.__init__(self, self)
        self._params: DiscreteSACParams = DiscreteSACParams()

    def with_sac_params(self, params: DiscreteSACParams) -> Self:
        self._params = params
        return self

    def _create_agent_factory(self) -> AgentFactory:
        return DiscreteSACAgentFactory(
            self._params,
            self._sampling_config,
            self._get_actor_factory(),
            self._get_critic_factory(0),
            self._get_critic_factory(1),
            self._get_optim_factory(),
        )


class TD3ExperimentBuilder(
    ExperimentBuilder,
    _BuilderMixinActorFactory_ContinuousDeterministic,
    _BuilderMixinDualCriticFactory,
):
    def __init__(
        self,
        env_factory: EnvFactory,
        experiment_config: ExperimentConfig | None = None,
        sampling_config: SamplingConfig | None = None,
    ):
        super().__init__(env_factory, experiment_config, sampling_config)
        _BuilderMixinActorFactory_ContinuousDeterministic.__init__(self)
        _BuilderMixinDualCriticFactory.__init__(self, self)
        self._params: TD3Params = TD3Params()

    def with_td3_params(self, params: TD3Params) -> Self:
        self._params = params
        return self

    def _create_agent_factory(self) -> AgentFactory:
        return TD3AgentFactory(
            self._params,
            self._sampling_config,
            self._get_actor_factory(),
            self._get_critic_factory(0),
            self._get_critic_factory(1),
            self._get_optim_factory(),
        )