File size: 9,714 Bytes
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from abc import ABC, abstractmethod
from collections.abc import Sequence
from dataclasses import dataclass
from enum import Enum
from typing import Protocol

import torch
from torch import nn

from tianshou.highlevel.env import Environments, EnvType
from tianshou.highlevel.module.core import (
    ModuleFactory,
    TDevice,
    init_linear_orthogonal,
)
from tianshou.highlevel.module.intermediate import (
    IntermediateModule,
    IntermediateModuleFactory,
)
from tianshou.highlevel.module.module_opt import ModuleOpt
from tianshou.highlevel.optim import OptimizerFactory
from tianshou.utils.net import continuous, discrete
from tianshou.utils.net.common import BaseActor, ModuleType, Net
from tianshou.utils.string import ToStringMixin


class ContinuousActorType(Enum):
    GAUSSIAN = "gaussian"
    DETERMINISTIC = "deterministic"
    UNSUPPORTED = "unsupported"


@dataclass
class ActorFuture:
    """Container, which, in the future, will hold an actor instance."""

    actor: BaseActor | nn.Module | None = None


class ActorFutureProviderProtocol(Protocol):
    def get_actor_future(self) -> ActorFuture:
        pass


class ActorFactory(ModuleFactory, ToStringMixin, ABC):
    @abstractmethod
    def create_module(self, envs: Environments, device: TDevice) -> BaseActor | nn.Module:
        pass

    def create_module_opt(
        self,
        envs: Environments,
        device: TDevice,
        optim_factory: OptimizerFactory,
        lr: float,
    ) -> ModuleOpt:
        """Creates the actor module along with its optimizer for the given learning rate.

        :param envs: the environments
        :param device: the torch device
        :param optim_factory: the optimizer factory
        :param lr: the learning rate
        :return: a container with the actor module and its optimizer
        """
        module = self.create_module(envs, device)
        optim = optim_factory.create_optimizer(module, lr)
        return ModuleOpt(module, optim)

    @staticmethod
    def _init_linear(actor: torch.nn.Module) -> None:
        """Initializes linear layers of an actor module using default mechanisms.

        :param module: the actor module.
        """
        init_linear_orthogonal(actor)
        if hasattr(actor, "mu"):
            # For continuous action spaces with Gaussian policies
            # do last policy layer scaling, this will make initial actions have (close to)
            # 0 mean and std, and will help boost performances,
            # see https://arxiv.org/abs/2006.05990, Fig.24 for details
            for m in actor.mu.modules():
                if isinstance(m, torch.nn.Linear):
                    m.weight.data.copy_(0.01 * m.weight.data)


class ActorFactoryDefault(ActorFactory):
    """An actor factory which, depending on the type of environment, creates a suitable MLP-based policy."""

    DEFAULT_HIDDEN_SIZES = (64, 64)

    def __init__(
        self,
        continuous_actor_type: ContinuousActorType,
        hidden_sizes: Sequence[int] = DEFAULT_HIDDEN_SIZES,
        hidden_activation: ModuleType = nn.ReLU,
        continuous_unbounded: bool = False,
        continuous_conditioned_sigma: bool = False,
        discrete_softmax: bool = True,
    ):
        self.continuous_actor_type = continuous_actor_type
        self.continuous_unbounded = continuous_unbounded
        self.continuous_conditioned_sigma = continuous_conditioned_sigma
        self.hidden_sizes = hidden_sizes
        self.hidden_activation = hidden_activation
        self.discrete_softmax = discrete_softmax

    def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
        env_type = envs.get_type()
        factory: ActorFactoryContinuousDeterministicNet | ActorFactoryContinuousGaussianNet | ActorFactoryDiscreteNet
        if env_type == EnvType.CONTINUOUS:
            match self.continuous_actor_type:
                case ContinuousActorType.GAUSSIAN:
                    factory = ActorFactoryContinuousGaussianNet(
                        self.hidden_sizes,
                        activation=self.hidden_activation,
                        unbounded=self.continuous_unbounded,
                        conditioned_sigma=self.continuous_conditioned_sigma,
                    )
                case ContinuousActorType.DETERMINISTIC:
                    factory = ActorFactoryContinuousDeterministicNet(
                        self.hidden_sizes,
                        activation=self.hidden_activation,
                    )
                case ContinuousActorType.UNSUPPORTED:
                    raise ValueError("Continuous action spaces are not supported by the algorithm")
                case _:
                    raise ValueError(self.continuous_actor_type)
            return factory.create_module(envs, device)
        elif env_type == EnvType.DISCRETE:
            factory = ActorFactoryDiscreteNet(
                self.DEFAULT_HIDDEN_SIZES,
                softmax_output=self.discrete_softmax,
            )
            return factory.create_module(envs, device)
        else:
            raise ValueError(f"{env_type} not supported")


class ActorFactoryContinuous(ActorFactory, ABC):
    """Serves as a type bound for actor factories that are suitable for continuous action spaces."""


class ActorFactoryContinuousDeterministicNet(ActorFactoryContinuous):
    def __init__(self, hidden_sizes: Sequence[int], activation: ModuleType = nn.ReLU):
        self.hidden_sizes = hidden_sizes
        self.activation = activation

    def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
        net_a = Net(
            state_shape=envs.get_observation_shape(),
            hidden_sizes=self.hidden_sizes,
            activation=self.activation,
            device=device,
        )
        return continuous.Actor(
            preprocess_net=net_a,
            action_shape=envs.get_action_shape(),
            hidden_sizes=(),
            device=device,
        ).to(device)


class ActorFactoryContinuousGaussianNet(ActorFactoryContinuous):
    def __init__(
        self,
        hidden_sizes: Sequence[int],
        unbounded: bool = True,
        conditioned_sigma: bool = False,
        activation: ModuleType = nn.ReLU,
    ):
        """For actors with Gaussian policies.

        :param hidden_sizes: the sequence of hidden dimensions to use in the network structure
        :param unbounded: whether to apply tanh activation on final logits
        :param conditioned_sigma: if True, the standard deviation of continuous actions (sigma) is computed from the
            input; if False, sigma is an independent parameter
        """
        self.hidden_sizes = hidden_sizes
        self.unbounded = unbounded
        self.conditioned_sigma = conditioned_sigma
        self.activation = activation

    def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
        net_a = Net(
            state_shape=envs.get_observation_shape(),
            hidden_sizes=self.hidden_sizes,
            activation=self.activation,
            device=device,
        )
        actor = continuous.ActorProb(
            preprocess_net=net_a,
            action_shape=envs.get_action_shape(),
            unbounded=self.unbounded,
            device=device,
            conditioned_sigma=self.conditioned_sigma,
        ).to(device)

        # init params
        if not self.conditioned_sigma:
            torch.nn.init.constant_(actor.sigma_param, -0.5)
        self._init_linear(actor)

        return actor


class ActorFactoryDiscreteNet(ActorFactory):
    def __init__(
        self,
        hidden_sizes: Sequence[int],
        softmax_output: bool = True,
        activation: ModuleType = nn.ReLU,
    ):
        self.hidden_sizes = hidden_sizes
        self.softmax_output = softmax_output
        self.activation = activation

    def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
        net_a = Net(
            state_shape=envs.get_observation_shape(),
            hidden_sizes=self.hidden_sizes,
            activation=self.activation,
            device=device,
        )
        return discrete.Actor(
            net_a,
            envs.get_action_shape(),
            hidden_sizes=(),
            device=device,
            softmax_output=self.softmax_output,
        ).to(device)


class ActorFactoryTransientStorageDecorator(ActorFactory):
    """Wraps an actor factory, storing the most recently created actor instance such that it can be retrieved."""

    def __init__(self, actor_factory: ActorFactory, actor_future: ActorFuture):
        self.actor_factory = actor_factory
        self._actor_future = actor_future

    def __getstate__(self) -> dict:
        d = dict(self.__dict__)
        del d["_actor_future"]
        return d

    def __setstate__(self, state: dict) -> None:
        self.__dict__ = state
        self._actor_future = ActorFuture()

    def _tostring_excludes(self) -> list[str]:
        return [*super()._tostring_excludes(), "_actor_future"]

    def create_module(self, envs: Environments, device: TDevice) -> BaseActor | nn.Module:
        module = self.actor_factory.create_module(envs, device)
        self._actor_future.actor = module
        return module


class IntermediateModuleFactoryFromActorFactory(IntermediateModuleFactory):
    def __init__(self, actor_factory: ActorFactory):
        self.actor_factory = actor_factory

    def create_intermediate_module(self, envs: Environments, device: TDevice) -> IntermediateModule:
        actor = self.actor_factory.create_module(envs, device)
        assert isinstance(actor, BaseActor)
        return IntermediateModule(actor, actor.get_output_dim())