File size: 9,714 Bytes
9b19c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
from abc import ABC, abstractmethod
from collections.abc import Sequence
from dataclasses import dataclass
from enum import Enum
from typing import Protocol
import torch
from torch import nn
from tianshou.highlevel.env import Environments, EnvType
from tianshou.highlevel.module.core import (
ModuleFactory,
TDevice,
init_linear_orthogonal,
)
from tianshou.highlevel.module.intermediate import (
IntermediateModule,
IntermediateModuleFactory,
)
from tianshou.highlevel.module.module_opt import ModuleOpt
from tianshou.highlevel.optim import OptimizerFactory
from tianshou.utils.net import continuous, discrete
from tianshou.utils.net.common import BaseActor, ModuleType, Net
from tianshou.utils.string import ToStringMixin
class ContinuousActorType(Enum):
GAUSSIAN = "gaussian"
DETERMINISTIC = "deterministic"
UNSUPPORTED = "unsupported"
@dataclass
class ActorFuture:
"""Container, which, in the future, will hold an actor instance."""
actor: BaseActor | nn.Module | None = None
class ActorFutureProviderProtocol(Protocol):
def get_actor_future(self) -> ActorFuture:
pass
class ActorFactory(ModuleFactory, ToStringMixin, ABC):
@abstractmethod
def create_module(self, envs: Environments, device: TDevice) -> BaseActor | nn.Module:
pass
def create_module_opt(
self,
envs: Environments,
device: TDevice,
optim_factory: OptimizerFactory,
lr: float,
) -> ModuleOpt:
"""Creates the actor module along with its optimizer for the given learning rate.
:param envs: the environments
:param device: the torch device
:param optim_factory: the optimizer factory
:param lr: the learning rate
:return: a container with the actor module and its optimizer
"""
module = self.create_module(envs, device)
optim = optim_factory.create_optimizer(module, lr)
return ModuleOpt(module, optim)
@staticmethod
def _init_linear(actor: torch.nn.Module) -> None:
"""Initializes linear layers of an actor module using default mechanisms.
:param module: the actor module.
"""
init_linear_orthogonal(actor)
if hasattr(actor, "mu"):
# For continuous action spaces with Gaussian policies
# do last policy layer scaling, this will make initial actions have (close to)
# 0 mean and std, and will help boost performances,
# see https://arxiv.org/abs/2006.05990, Fig.24 for details
for m in actor.mu.modules():
if isinstance(m, torch.nn.Linear):
m.weight.data.copy_(0.01 * m.weight.data)
class ActorFactoryDefault(ActorFactory):
"""An actor factory which, depending on the type of environment, creates a suitable MLP-based policy."""
DEFAULT_HIDDEN_SIZES = (64, 64)
def __init__(
self,
continuous_actor_type: ContinuousActorType,
hidden_sizes: Sequence[int] = DEFAULT_HIDDEN_SIZES,
hidden_activation: ModuleType = nn.ReLU,
continuous_unbounded: bool = False,
continuous_conditioned_sigma: bool = False,
discrete_softmax: bool = True,
):
self.continuous_actor_type = continuous_actor_type
self.continuous_unbounded = continuous_unbounded
self.continuous_conditioned_sigma = continuous_conditioned_sigma
self.hidden_sizes = hidden_sizes
self.hidden_activation = hidden_activation
self.discrete_softmax = discrete_softmax
def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
env_type = envs.get_type()
factory: ActorFactoryContinuousDeterministicNet | ActorFactoryContinuousGaussianNet | ActorFactoryDiscreteNet
if env_type == EnvType.CONTINUOUS:
match self.continuous_actor_type:
case ContinuousActorType.GAUSSIAN:
factory = ActorFactoryContinuousGaussianNet(
self.hidden_sizes,
activation=self.hidden_activation,
unbounded=self.continuous_unbounded,
conditioned_sigma=self.continuous_conditioned_sigma,
)
case ContinuousActorType.DETERMINISTIC:
factory = ActorFactoryContinuousDeterministicNet(
self.hidden_sizes,
activation=self.hidden_activation,
)
case ContinuousActorType.UNSUPPORTED:
raise ValueError("Continuous action spaces are not supported by the algorithm")
case _:
raise ValueError(self.continuous_actor_type)
return factory.create_module(envs, device)
elif env_type == EnvType.DISCRETE:
factory = ActorFactoryDiscreteNet(
self.DEFAULT_HIDDEN_SIZES,
softmax_output=self.discrete_softmax,
)
return factory.create_module(envs, device)
else:
raise ValueError(f"{env_type} not supported")
class ActorFactoryContinuous(ActorFactory, ABC):
"""Serves as a type bound for actor factories that are suitable for continuous action spaces."""
class ActorFactoryContinuousDeterministicNet(ActorFactoryContinuous):
def __init__(self, hidden_sizes: Sequence[int], activation: ModuleType = nn.ReLU):
self.hidden_sizes = hidden_sizes
self.activation = activation
def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
net_a = Net(
state_shape=envs.get_observation_shape(),
hidden_sizes=self.hidden_sizes,
activation=self.activation,
device=device,
)
return continuous.Actor(
preprocess_net=net_a,
action_shape=envs.get_action_shape(),
hidden_sizes=(),
device=device,
).to(device)
class ActorFactoryContinuousGaussianNet(ActorFactoryContinuous):
def __init__(
self,
hidden_sizes: Sequence[int],
unbounded: bool = True,
conditioned_sigma: bool = False,
activation: ModuleType = nn.ReLU,
):
"""For actors with Gaussian policies.
:param hidden_sizes: the sequence of hidden dimensions to use in the network structure
:param unbounded: whether to apply tanh activation on final logits
:param conditioned_sigma: if True, the standard deviation of continuous actions (sigma) is computed from the
input; if False, sigma is an independent parameter
"""
self.hidden_sizes = hidden_sizes
self.unbounded = unbounded
self.conditioned_sigma = conditioned_sigma
self.activation = activation
def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
net_a = Net(
state_shape=envs.get_observation_shape(),
hidden_sizes=self.hidden_sizes,
activation=self.activation,
device=device,
)
actor = continuous.ActorProb(
preprocess_net=net_a,
action_shape=envs.get_action_shape(),
unbounded=self.unbounded,
device=device,
conditioned_sigma=self.conditioned_sigma,
).to(device)
# init params
if not self.conditioned_sigma:
torch.nn.init.constant_(actor.sigma_param, -0.5)
self._init_linear(actor)
return actor
class ActorFactoryDiscreteNet(ActorFactory):
def __init__(
self,
hidden_sizes: Sequence[int],
softmax_output: bool = True,
activation: ModuleType = nn.ReLU,
):
self.hidden_sizes = hidden_sizes
self.softmax_output = softmax_output
self.activation = activation
def create_module(self, envs: Environments, device: TDevice) -> BaseActor:
net_a = Net(
state_shape=envs.get_observation_shape(),
hidden_sizes=self.hidden_sizes,
activation=self.activation,
device=device,
)
return discrete.Actor(
net_a,
envs.get_action_shape(),
hidden_sizes=(),
device=device,
softmax_output=self.softmax_output,
).to(device)
class ActorFactoryTransientStorageDecorator(ActorFactory):
"""Wraps an actor factory, storing the most recently created actor instance such that it can be retrieved."""
def __init__(self, actor_factory: ActorFactory, actor_future: ActorFuture):
self.actor_factory = actor_factory
self._actor_future = actor_future
def __getstate__(self) -> dict:
d = dict(self.__dict__)
del d["_actor_future"]
return d
def __setstate__(self, state: dict) -> None:
self.__dict__ = state
self._actor_future = ActorFuture()
def _tostring_excludes(self) -> list[str]:
return [*super()._tostring_excludes(), "_actor_future"]
def create_module(self, envs: Environments, device: TDevice) -> BaseActor | nn.Module:
module = self.actor_factory.create_module(envs, device)
self._actor_future.actor = module
return module
class IntermediateModuleFactoryFromActorFactory(IntermediateModuleFactory):
def __init__(self, actor_factory: ActorFactory):
self.actor_factory = actor_factory
def create_intermediate_module(self, envs: Environments, device: TDevice) -> IntermediateModule:
actor = self.actor_factory.create_module(envs, device)
assert isinstance(actor, BaseActor)
return IntermediateModule(actor, actor.get_output_dim())
|