File size: 10,066 Bytes
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from abc import ABC, abstractmethod
from collections.abc import Sequence

import numpy as np
from torch import nn

from tianshou.highlevel.env import Environments, EnvType
from tianshou.highlevel.module.actor import ActorFuture
from tianshou.highlevel.module.core import TDevice, init_linear_orthogonal
from tianshou.highlevel.module.module_opt import ModuleOpt
from tianshou.highlevel.optim import OptimizerFactory
from tianshou.utils.net import continuous, discrete
from tianshou.utils.net.common import BaseActor, EnsembleLinear, ModuleType, Net
from tianshou.utils.string import ToStringMixin


class CriticFactory(ToStringMixin, ABC):
    """Represents a factory for the generation of a critic module."""

    @abstractmethod
    def create_module(
        self,
        envs: Environments,
        device: TDevice,
        use_action: bool,
        discrete_last_size_use_action_shape: bool = False,
    ) -> nn.Module:
        """Creates the critic module.

        :param envs: the environments
        :param device: the torch device
        :param use_action: whether to expect the action as an additional input (in addition to the observations)
        :param discrete_last_size_use_action_shape: whether, for the discrete case, the output dimension shall use the action shape
        :return: the module
        """

    def create_module_opt(
        self,
        envs: Environments,
        device: TDevice,
        use_action: bool,
        optim_factory: OptimizerFactory,
        lr: float,
        discrete_last_size_use_action_shape: bool = False,
    ) -> ModuleOpt:
        """Creates the critic module along with its optimizer for the given learning rate.

        :param envs: the environments
        :param device: the torch device
        :param use_action: whether to expect the action as an additional input (in addition to the observations)
        :param optim_factory: the optimizer factory
        :param lr: the learning rate
        :param discrete_last_size_use_action_shape: whether, for the discrete case, the output dimension shall use the action shape
        :return:
        """
        module = self.create_module(
            envs,
            device,
            use_action,
            discrete_last_size_use_action_shape=discrete_last_size_use_action_shape,
        )
        opt = optim_factory.create_optimizer(module, lr)
        return ModuleOpt(module, opt)


class CriticFactoryDefault(CriticFactory):
    """A critic factory which, depending on the type of environment, creates a suitable MLP-based critic."""

    DEFAULT_HIDDEN_SIZES = (64, 64)

    def __init__(
        self,
        hidden_sizes: Sequence[int] = DEFAULT_HIDDEN_SIZES,
        hidden_activation: ModuleType = nn.ReLU,
    ):
        self.hidden_sizes = hidden_sizes
        self.hidden_activation = hidden_activation

    def create_module(
        self,
        envs: Environments,
        device: TDevice,
        use_action: bool,
        discrete_last_size_use_action_shape: bool = False,
    ) -> nn.Module:
        factory: CriticFactory
        env_type = envs.get_type()
        match env_type:
            case EnvType.CONTINUOUS:
                factory = CriticFactoryContinuousNet(
                    self.hidden_sizes,
                    activation=self.hidden_activation,
                )
            case EnvType.DISCRETE:
                factory = CriticFactoryDiscreteNet(
                    self.hidden_sizes,
                    activation=self.hidden_activation,
                )
            case _:
                raise ValueError(f"{env_type} not supported")
        return factory.create_module(
            envs,
            device,
            use_action,
            discrete_last_size_use_action_shape=discrete_last_size_use_action_shape,
        )


class CriticFactoryContinuousNet(CriticFactory):
    def __init__(self, hidden_sizes: Sequence[int], activation: ModuleType = nn.ReLU):
        self.hidden_sizes = hidden_sizes
        self.activation = activation

    def create_module(
        self,
        envs: Environments,
        device: TDevice,
        use_action: bool,
        discrete_last_size_use_action_shape: bool = False,
    ) -> nn.Module:
        action_shape = envs.get_action_shape() if use_action else 0
        net_c = Net(
            state_shape=envs.get_observation_shape(),
            action_shape=action_shape,
            hidden_sizes=self.hidden_sizes,
            concat=use_action,
            activation=self.activation,
            device=device,
        )
        critic = continuous.Critic(net_c, device=device).to(device)
        init_linear_orthogonal(critic)
        return critic


class CriticFactoryDiscreteNet(CriticFactory):
    def __init__(self, hidden_sizes: Sequence[int], activation: ModuleType = nn.ReLU):
        self.hidden_sizes = hidden_sizes
        self.activation = activation

    def create_module(
        self,
        envs: Environments,
        device: TDevice,
        use_action: bool,
        discrete_last_size_use_action_shape: bool = False,
    ) -> nn.Module:
        action_shape = envs.get_action_shape() if use_action else 0
        net_c = Net(
            state_shape=envs.get_observation_shape(),
            action_shape=action_shape,
            hidden_sizes=self.hidden_sizes,
            concat=use_action,
            activation=self.activation,
            device=device,
        )
        last_size = (
            int(np.prod(envs.get_action_shape())) if discrete_last_size_use_action_shape else 1
        )
        critic = discrete.Critic(net_c, device=device, last_size=last_size).to(device)
        init_linear_orthogonal(critic)
        return critic


class CriticFactoryReuseActor(CriticFactory):
    """A critic factory which reuses the actor's preprocessing component.

    This class is for internal use in experiment builders only.
    """

    def __init__(self, actor_future: ActorFuture):
        """:param actor_future: the object, which will hold the actor instance later when the critic is to be created"""
        self.actor_future = actor_future

    def _tostring_excludes(self) -> list[str]:
        return ["actor_future"]

    def create_module(
        self,
        envs: Environments,
        device: TDevice,
        use_action: bool,
        discrete_last_size_use_action_shape: bool = False,
    ) -> nn.Module:
        actor = self.actor_future.actor
        if not isinstance(actor, BaseActor):
            raise ValueError(
                f"Option critic_use_action can only be used if actor is of type {BaseActor.__class__.__name__}",
            )
        if envs.get_type().is_discrete():
            # TODO get rid of this prod pattern here and elsewhere
            last_size = (
                int(np.prod(envs.get_action_shape())) if discrete_last_size_use_action_shape else 1
            )
            return discrete.Critic(
                actor.get_preprocess_net(),
                device=device,
                last_size=last_size,
            ).to(device)
        elif envs.get_type().is_continuous():
            return continuous.Critic(
                actor.get_preprocess_net(),
                device=device,
                apply_preprocess_net_to_obs_only=True,
            ).to(device)
        else:
            raise ValueError


class CriticEnsembleFactory:
    @abstractmethod
    def create_module(
        self,
        envs: Environments,
        device: TDevice,
        ensemble_size: int,
        use_action: bool,
    ) -> nn.Module:
        pass

    def create_module_opt(
        self,
        envs: Environments,
        device: TDevice,
        ensemble_size: int,
        use_action: bool,
        optim_factory: OptimizerFactory,
        lr: float,
    ) -> ModuleOpt:
        module = self.create_module(envs, device, ensemble_size, use_action)
        opt = optim_factory.create_optimizer(module, lr)
        return ModuleOpt(module, opt)


class CriticEnsembleFactoryDefault(CriticEnsembleFactory):
    """A critic ensemble factory which, depending on the type of environment, creates a suitable MLP-based critic."""

    DEFAULT_HIDDEN_SIZES = (64, 64)

    def __init__(self, hidden_sizes: Sequence[int] = DEFAULT_HIDDEN_SIZES):
        self.hidden_sizes = hidden_sizes

    def create_module(
        self,
        envs: Environments,
        device: TDevice,
        ensemble_size: int,
        use_action: bool,
    ) -> nn.Module:
        env_type = envs.get_type()
        factory: CriticEnsembleFactory
        match env_type:
            case EnvType.CONTINUOUS:
                factory = CriticEnsembleFactoryContinuousNet(self.hidden_sizes)
            case EnvType.DISCRETE:
                raise NotImplementedError("No default is implemented for the discrete case")
            case _:
                raise ValueError(f"{env_type} not supported")
        return factory.create_module(
            envs,
            device,
            ensemble_size,
            use_action,
        )


class CriticEnsembleFactoryContinuousNet(CriticEnsembleFactory):
    def __init__(self, hidden_sizes: Sequence[int]):
        self.hidden_sizes = hidden_sizes

    def create_module(
        self,
        envs: Environments,
        device: TDevice,
        ensemble_size: int,
        use_action: bool,
    ) -> nn.Module:
        def linear_layer(x: int, y: int) -> EnsembleLinear:
            return EnsembleLinear(ensemble_size, x, y)

        action_shape = envs.get_action_shape() if use_action else 0
        net_c = Net(
            state_shape=envs.get_observation_shape(),
            action_shape=action_shape,
            hidden_sizes=self.hidden_sizes,
            concat=use_action,
            activation=nn.Tanh,
            device=device,
            linear_layer=linear_layer,
        )
        critic = continuous.Critic(
            net_c,
            device=device,
            linear_layer=linear_layer,
            flatten_input=False,
        ).to(device)
        init_linear_orthogonal(critic)
        return critic