File size: 12,022 Bytes
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from typing import Any, Literal, Protocol, Self, TypeVar, cast, overload

import numpy as np
from overrides import override

from tianshou.data import Batch, ReplayBuffer
from tianshou.data.batch import BatchProtocol, IndexType
from tianshou.data.types import ActBatchProtocol, ObsBatchProtocol, RolloutBatchProtocol
from tianshou.policy import BasePolicy
from tianshou.policy.base import TLearningRateScheduler, TrainingStats

try:
    from tianshou.env.pettingzoo_env import PettingZooEnv
except ImportError:
    PettingZooEnv = None  # type: ignore


class MapTrainingStats(TrainingStats):
    def __init__(
        self,
        agent_id_to_stats: dict[str | int, TrainingStats],
        train_time_aggregator: Literal["min", "max", "mean"] = "max",
    ) -> None:
        self._agent_id_to_stats = agent_id_to_stats
        train_times = [agent_stats.train_time for agent_stats in agent_id_to_stats.values()]
        match train_time_aggregator:
            case "max":
                aggr_function = max
            case "min":
                aggr_function = min
            case "mean":
                aggr_function = np.mean  # type: ignore
            case _:
                raise ValueError(
                    f"Unknown {train_time_aggregator=}",
                )
        self.train_time = aggr_function(train_times)
        self.smoothed_loss = {}

    @override
    def get_loss_stats_dict(self) -> dict[str, float]:
        """Collects loss_stats_dicts from all agents, prepends agent_id to all keys, and joins results."""
        result_dict = {}
        for agent_id, stats in self._agent_id_to_stats.items():
            agent_loss_stats_dict = stats.get_loss_stats_dict()
            for k, v in agent_loss_stats_dict.items():
                result_dict[f"{agent_id}/" + k] = v
        return result_dict


class MAPRolloutBatchProtocol(RolloutBatchProtocol, Protocol):
    # TODO: this might not be entirely correct.
    #  The whole MAP data processing pipeline needs more documentation and possibly some refactoring
    @overload
    def __getitem__(self, index: str) -> RolloutBatchProtocol:
        ...

    @overload
    def __getitem__(self, index: IndexType) -> Self:
        ...

    def __getitem__(self, index: str | IndexType) -> Any:
        ...


class MultiAgentPolicyManager(BasePolicy):
    """Multi-agent policy manager for MARL.

    This multi-agent policy manager accepts a list of
    :class:`~tianshou.policy.BasePolicy`. It dispatches the batch data to each
    of these policies when the "forward" is called. The same as "process_fn"
    and "learn": it splits the data and feeds them to each policy. A figure in
    :ref:`marl_example` can help you better understand this procedure.

    :param policies: a list of policies.
    :param env: a PettingZooEnv.
    :param action_scaling: if True, scale the action from [-1, 1] to the range
        of action_space. Only used if the action_space is continuous.
    :param action_bound_method: method to bound action to range [-1, 1].
        Only used if the action_space is continuous.
    :param lr_scheduler: if not None, will be called in `policy.update()`.
    """

    def __init__(
        self,
        *,
        policies: list[BasePolicy],
        # TODO: 1 why restrict to PettingZooEnv?
        # TODO: 2 This is the only policy that takes an env in init, is it really needed?
        env: PettingZooEnv,
        action_scaling: bool = False,
        action_bound_method: Literal["clip", "tanh"] | None = "clip",
        lr_scheduler: TLearningRateScheduler | None = None,
    ) -> None:
        super().__init__(
            action_space=env.action_space,
            observation_space=env.observation_space,
            action_scaling=action_scaling,
            action_bound_method=action_bound_method,
            lr_scheduler=lr_scheduler,
        )
        assert len(policies) == len(env.agents), "One policy must be assigned for each agent."

        self.agent_idx = env.agent_idx
        for i, policy in enumerate(policies):
            # agent_id 0 is reserved for the environment proxy
            # (this MultiAgentPolicyManager)
            policy.set_agent_id(env.agents[i])

        self.policies: dict[str | int, BasePolicy] = dict(zip(env.agents, policies, strict=True))
        """Maps agent_id to policy."""

    # TODO: unused - remove it?
    def replace_policy(self, policy: BasePolicy, agent_id: int) -> None:
        """Replace the "agent_id"th policy in this manager."""
        policy.set_agent_id(agent_id)
        self.policies[agent_id] = policy

    # TODO: violates Liskov substitution principle
    def process_fn(  # type: ignore
        self,
        batch: MAPRolloutBatchProtocol,
        buffer: ReplayBuffer,
        indice: np.ndarray,
    ) -> MAPRolloutBatchProtocol:
        """Dispatch batch data from `obs.agent_id` to every policy's process_fn.

        Save original multi-dimensional rew in "save_rew", set rew to the
        reward of each agent during their "process_fn", and restore the
        original reward afterwards.
        """
        # TODO: maybe only str is actually allowed as agent_id? See MAPRolloutBatchProtocol
        results: dict[str | int, RolloutBatchProtocol] = {}
        assert isinstance(
            batch.obs,
            BatchProtocol,
        ), f"here only observations of type Batch are permitted, but got {type(batch.obs)}"
        # reward can be empty Batch (after initial reset) or nparray.
        has_rew = isinstance(buffer.rew, np.ndarray)
        if has_rew:  # save the original reward in save_rew
            # Since we do not override buffer.__setattr__, here we use _meta to
            # change buffer.rew, otherwise buffer.rew = Batch() has no effect.
            save_rew, buffer._meta.rew = buffer.rew, Batch()  # type: ignore
        for agent, policy in self.policies.items():
            agent_index = np.nonzero(batch.obs.agent_id == agent)[0]
            if len(agent_index) == 0:
                results[agent] = cast(RolloutBatchProtocol, Batch())
                continue
            tmp_batch, tmp_indice = batch[agent_index], indice[agent_index]
            if has_rew:
                tmp_batch.rew = tmp_batch.rew[:, self.agent_idx[agent]]
                buffer._meta.rew = save_rew[:, self.agent_idx[agent]]
            if not hasattr(tmp_batch.obs, "mask"):
                if hasattr(tmp_batch.obs, "obs"):
                    tmp_batch.obs = tmp_batch.obs.obs
                if hasattr(tmp_batch.obs_next, "obs"):
                    tmp_batch.obs_next = tmp_batch.obs_next.obs
            results[agent] = policy.process_fn(tmp_batch, buffer, tmp_indice)
        if has_rew:  # restore from save_rew
            buffer._meta.rew = save_rew
        return Batch(results)

    _TArrOrActBatch = TypeVar("_TArrOrActBatch", bound="np.ndarray | ActBatchProtocol")

    def exploration_noise(
        self,
        act: _TArrOrActBatch,
        batch: ObsBatchProtocol,
    ) -> _TArrOrActBatch:
        """Add exploration noise from sub-policy onto act."""
        if not isinstance(batch.obs, Batch):
            raise TypeError(
                f"here only observations of type Batch are permitted, but got {type(batch.obs)}",
            )
        for agent_id, policy in self.policies.items():
            agent_index = np.nonzero(batch.obs.agent_id == agent_id)[0]
            if len(agent_index) == 0:
                continue
            act[agent_index] = policy.exploration_noise(act[agent_index], batch[agent_index])
        return act

    def forward(  # type: ignore
        self,
        batch: Batch,
        state: dict | Batch | None = None,
        **kwargs: Any,
    ) -> Batch:
        """Dispatch batch data from obs.agent_id to every policy's forward.

        :param batch: TODO: document what is expected at input and make a BatchProtocol for it
        :param state: if None, it means all agents have no state. If not
            None, it should contain keys of "agent_1", "agent_2", ...

        :return: a Batch with the following contents:
            TODO: establish a BatcProtocol for this

        ::

            {
                "act": actions corresponding to the input
                "state": {
                    "agent_1": output state of agent_1's policy for the state
                    "agent_2": xxx
                    ...
                    "agent_n": xxx}
                "out": {
                    "agent_1": output of agent_1's policy for the input
                    "agent_2": xxx
                    ...
                    "agent_n": xxx}
            }
        """
        results: list[tuple[bool, np.ndarray, Batch, np.ndarray | Batch, Batch]] = []
        for agent_id, policy in self.policies.items():
            # This part of code is difficult to understand.
            # Let's follow an example with two agents
            # batch.obs.agent_id is [1, 2, 1, 2, 1, 2] (with batch_size == 6)
            # each agent plays for three transitions
            # agent_index for agent 1 is [0, 2, 4]
            # agent_index for agent 2 is [1, 3, 5]
            # we separate the transition of each agent according to agent_id
            agent_index = np.nonzero(batch.obs.agent_id == agent_id)[0]
            if len(agent_index) == 0:
                # (has_data, agent_index, out, act, state)
                results.append((False, np.array([-1]), Batch(), Batch(), Batch()))
                continue
            tmp_batch = batch[agent_index]
            if "rew" in tmp_batch.get_keys() and isinstance(tmp_batch.rew, np.ndarray):
                # reward can be empty Batch (after initial reset) or nparray.
                tmp_batch.rew = tmp_batch.rew[:, self.agent_idx[agent_id]]
            if not hasattr(tmp_batch.obs, "mask"):
                if hasattr(tmp_batch.obs, "obs"):
                    tmp_batch.obs = tmp_batch.obs.obs
                if hasattr(tmp_batch.obs_next, "obs"):
                    tmp_batch.obs_next = tmp_batch.obs_next.obs
            out = policy(
                batch=tmp_batch,
                state=None if state is None else state[agent_id],
                **kwargs,
            )
            act = out.act
            each_state = out.state if (hasattr(out, "state") and out.state is not None) else Batch()
            results.append((True, agent_index, out, act, each_state))
        holder: Batch = Batch.cat(
            [{"act": act} for (has_data, agent_index, out, act, each_state) in results if has_data],
        )
        state_dict, out_dict = {}, {}
        for (agent_id, _), (has_data, agent_index, out, act, state) in zip(
            self.policies.items(),
            results,
            strict=True,
        ):
            if has_data:
                holder.act[agent_index] = act
            state_dict[agent_id] = state
            out_dict[agent_id] = out
        holder["out"] = out_dict
        holder["state"] = state_dict
        return holder

    # Violates Liskov substitution principle
    def learn(  # type: ignore
        self,
        batch: MAPRolloutBatchProtocol,
        *args: Any,
        **kwargs: Any,
    ) -> MapTrainingStats:
        """Dispatch the data to all policies for learning.

        :param batch: must map agent_ids to rollout batches
        """
        agent_id_to_stats = {}
        for agent_id, policy in self.policies.items():
            data = batch[agent_id]
            if not data.is_empty():
                train_stats = policy.learn(batch=data, **kwargs)
                agent_id_to_stats[agent_id] = train_stats
        return MapTrainingStats(agent_id_to_stats)

    # Need a train method that set all sub-policies to train mode.
    # No need for a similar eval function, as eval internally uses the train function.
    def train(self, mode: bool = True) -> Self:
        """Set each internal policy in training mode."""
        for policy in self.policies.values():
            policy.train(mode)
        return self