File size: 25,886 Bytes
9b19c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
from abc import ABC, abstractmethod
from collections.abc import Callable, Sequence
from typing import Any, Generic, TypeAlias, TypeVar, cast, no_type_check
import numpy as np
import torch
from torch import nn
from tianshou.data.batch import Batch
from tianshou.data.types import RecurrentStateBatch
ModuleType = type[nn.Module]
ArgsType = tuple[Any, ...] | dict[Any, Any] | Sequence[tuple[Any, ...]] | Sequence[dict[Any, Any]]
TActionShape: TypeAlias = Sequence[int] | int | np.int64
TLinearLayer: TypeAlias = Callable[[int, int], nn.Module]
T = TypeVar("T")
def miniblock(
input_size: int,
output_size: int = 0,
norm_layer: ModuleType | None = None,
norm_args: tuple[Any, ...] | dict[Any, Any] | None = None,
activation: ModuleType | None = None,
act_args: tuple[Any, ...] | dict[Any, Any] | None = None,
linear_layer: TLinearLayer = nn.Linear,
) -> list[nn.Module]:
"""Construct a miniblock with given input/output-size, norm layer and activation."""
layers: list[nn.Module] = [linear_layer(input_size, output_size)]
if norm_layer is not None:
if isinstance(norm_args, tuple):
layers += [norm_layer(output_size, *norm_args)]
elif isinstance(norm_args, dict):
layers += [norm_layer(output_size, **norm_args)]
else:
layers += [norm_layer(output_size)]
if activation is not None:
if isinstance(act_args, tuple):
layers += [activation(*act_args)]
elif isinstance(act_args, dict):
layers += [activation(**act_args)]
else:
layers += [activation()]
return layers
class MLP(nn.Module):
"""Simple MLP backbone.
Create a MLP of size input_dim * hidden_sizes[0] * hidden_sizes[1] * ...
* hidden_sizes[-1] * output_dim
:param input_dim: dimension of the input vector.
:param output_dim: dimension of the output vector. If set to 0, there
is no final linear layer.
:param hidden_sizes: shape of MLP passed in as a list, not including
input_dim and output_dim.
:param norm_layer: use which normalization before activation, e.g.,
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization.
You can also pass a list of normalization modules with the same length
of hidden_sizes, to use different normalization module in different
layers. Default to no normalization.
:param activation: which activation to use after each layer, can be both
the same activation for all layers if passed in nn.Module, or different
activation for different Modules if passed in a list. Default to
nn.ReLU.
:param device: which device to create this model on. Default to None.
:param linear_layer: use this module as linear layer. Default to nn.Linear.
:param flatten_input: whether to flatten input data. Default to True.
"""
def __init__(
self,
input_dim: int,
output_dim: int = 0,
hidden_sizes: Sequence[int] = (),
norm_layer: ModuleType | Sequence[ModuleType] | None = None,
norm_args: ArgsType | None = None,
activation: ModuleType | Sequence[ModuleType] | None = nn.ReLU,
act_args: ArgsType | None = None,
device: str | int | torch.device | None = None,
linear_layer: TLinearLayer = nn.Linear,
flatten_input: bool = True,
) -> None:
super().__init__()
self.device = device
if norm_layer:
if isinstance(norm_layer, list):
assert len(norm_layer) == len(hidden_sizes)
norm_layer_list = norm_layer
if isinstance(norm_args, list):
assert len(norm_args) == len(hidden_sizes)
norm_args_list = norm_args
else:
norm_args_list = [norm_args for _ in range(len(hidden_sizes))]
else:
norm_layer_list = [norm_layer for _ in range(len(hidden_sizes))]
norm_args_list = [norm_args for _ in range(len(hidden_sizes))]
else:
norm_layer_list = [None] * len(hidden_sizes)
norm_args_list = [None] * len(hidden_sizes)
if activation:
if isinstance(activation, list):
assert len(activation) == len(hidden_sizes)
activation_list = activation
if isinstance(act_args, list):
assert len(act_args) == len(hidden_sizes)
act_args_list = act_args
else:
act_args_list = [act_args for _ in range(len(hidden_sizes))]
else:
activation_list = [activation for _ in range(len(hidden_sizes))]
act_args_list = [act_args for _ in range(len(hidden_sizes))]
else:
activation_list = [None] * len(hidden_sizes)
act_args_list = [None] * len(hidden_sizes)
hidden_sizes = [input_dim, *list(hidden_sizes)]
model = []
for in_dim, out_dim, norm, norm_args, activ, act_args in zip(
hidden_sizes[:-1],
hidden_sizes[1:],
norm_layer_list,
norm_args_list,
activation_list,
act_args_list,
strict=True,
):
model += miniblock(in_dim, out_dim, norm, norm_args, activ, act_args, linear_layer)
if output_dim > 0:
model += [linear_layer(hidden_sizes[-1], output_dim)]
self.output_dim = output_dim or hidden_sizes[-1]
self.model = nn.Sequential(*model)
self.flatten_input = flatten_input
@no_type_check
def forward(self, obs: np.ndarray | torch.Tensor) -> torch.Tensor:
obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32)
if self.flatten_input:
obs = obs.flatten(1)
return self.model(obs)
TRecurrentState = TypeVar("TRecurrentState", bound=Any)
class NetBase(nn.Module, Generic[TRecurrentState], ABC):
"""Interface for NNs used in policies."""
@abstractmethod
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: TRecurrentState | None = None,
info: dict[str, Any] | None = None,
) -> tuple[torch.Tensor, TRecurrentState | None]:
pass
class Net(NetBase[Any]):
"""Wrapper of MLP to support more specific DRL usage.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
:param state_shape: int or a sequence of int of the shape of state.
:param action_shape: int or a sequence of int of the shape of action.
:param hidden_sizes: shape of MLP passed in as a list.
:param norm_layer: use which normalization before activation, e.g.,
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization.
You can also pass a list of normalization modules with the same length
of hidden_sizes, to use different normalization module in different
layers. Default to no normalization.
:param activation: which activation to use after each layer, can be both
the same activation for all layers if passed in nn.Module, or different
activation for different Modules if passed in a list. Default to
nn.ReLU.
:param device: specify the device when the network actually runs. Default
to "cpu".
:param softmax: whether to apply a softmax layer over the last layer's
output.
:param concat: whether the input shape is concatenated by state_shape
and action_shape. If it is True, ``action_shape`` is not the output
shape, but affects the input shape only.
:param num_atoms: in order to expand to the net of distributional RL.
Default to 1 (not use).
:param dueling_param: whether to use dueling network to calculate Q
values (for Dueling DQN). If you want to use dueling option, you should
pass a tuple of two dict (first for Q and second for V) stating
self-defined arguments as stated in
class:`~tianshou.utils.net.common.MLP`. Default to None.
:param linear_layer: use this module constructor, which takes the input
and output dimension as input, as linear layer. Default to nn.Linear.
.. seealso::
Please refer to :class:`~tianshou.utils.net.common.MLP` for more
detailed explanation on the usage of activation, norm_layer, etc.
You can also refer to :class:`~tianshou.utils.net.continuous.Actor`,
:class:`~tianshou.utils.net.continuous.Critic`, etc, to see how it's
suggested be used.
"""
def __init__(
self,
state_shape: int | Sequence[int],
action_shape: TActionShape = 0,
hidden_sizes: Sequence[int] = (),
norm_layer: ModuleType | Sequence[ModuleType] | None = None,
norm_args: ArgsType | None = None,
activation: ModuleType | Sequence[ModuleType] | None = nn.ReLU,
act_args: ArgsType | None = None,
device: str | int | torch.device = "cpu",
softmax: bool = False,
concat: bool = False,
num_atoms: int = 1,
dueling_param: tuple[dict[str, Any], dict[str, Any]] | None = None,
linear_layer: TLinearLayer = nn.Linear,
) -> None:
super().__init__()
self.device = device
self.softmax = softmax
self.num_atoms = num_atoms
self.Q: MLP | None = None
self.V: MLP | None = None
input_dim = int(np.prod(state_shape))
action_dim = int(np.prod(action_shape)) * num_atoms
if concat:
input_dim += action_dim
self.use_dueling = dueling_param is not None
output_dim = action_dim if not self.use_dueling and not concat else 0
self.model = MLP(
input_dim,
output_dim,
hidden_sizes,
norm_layer,
norm_args,
activation,
act_args,
device,
linear_layer,
)
if self.use_dueling: # dueling DQN
assert dueling_param is not None
kwargs_update = {
"input_dim": self.model.output_dim,
"device": self.device,
}
# Important: don't change the original dict (e.g., don't use .update())
q_kwargs = {**dueling_param[0], **kwargs_update}
v_kwargs = {**dueling_param[1], **kwargs_update}
q_kwargs["output_dim"] = 0 if concat else action_dim
v_kwargs["output_dim"] = 0 if concat else num_atoms
self.Q, self.V = MLP(**q_kwargs), MLP(**v_kwargs)
self.output_dim = self.Q.output_dim
else:
self.output_dim = self.model.output_dim
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any = None,
info: dict[str, Any] | None = None,
) -> tuple[torch.Tensor, Any]:
"""Mapping: obs -> flatten (inside MLP)-> logits.
:param obs:
:param state: unused and returned as is
:param info: unused
"""
logits = self.model(obs)
batch_size = logits.shape[0]
if self.use_dueling: # Dueling DQN
assert self.Q is not None
assert self.V is not None
q, v = self.Q(logits), self.V(logits)
if self.num_atoms > 1:
q = q.view(batch_size, -1, self.num_atoms)
v = v.view(batch_size, -1, self.num_atoms)
logits = q - q.mean(dim=1, keepdim=True) + v
elif self.num_atoms > 1:
logits = logits.view(batch_size, -1, self.num_atoms)
if self.softmax:
logits = torch.softmax(logits, dim=-1)
return logits, state
class Recurrent(NetBase[RecurrentStateBatch]):
"""Simple Recurrent network based on LSTM.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
layer_num: int,
state_shape: int | Sequence[int],
action_shape: TActionShape,
device: str | int | torch.device = "cpu",
hidden_layer_size: int = 128,
) -> None:
super().__init__()
self.device = device
self.nn = nn.LSTM(
input_size=hidden_layer_size,
hidden_size=hidden_layer_size,
num_layers=layer_num,
batch_first=True,
)
self.fc1 = nn.Linear(int(np.prod(state_shape)), hidden_layer_size)
self.fc2 = nn.Linear(hidden_layer_size, int(np.prod(action_shape)))
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: RecurrentStateBatch | None = None,
info: dict[str, Any] | None = None,
) -> tuple[torch.Tensor, RecurrentStateBatch]:
"""Mapping: obs -> flatten -> logits.
In the evaluation mode, `obs` should be with shape ``[bsz, dim]``; in the
training mode, `obs` should be with shape ``[bsz, len, dim]``. See the code
and comment for more detail.
:param obs:
:param state: either None or a dict with keys 'hidden' and 'cell'
:param info: unused
:return: predicted action, next state as dict with keys 'hidden' and 'cell'
"""
# Note: the original type of state is Batch but it might also be a dict
# If it is a Batch, .issubset(state) will not work. However,
# issubset(state.keys()) always works
if state is not None and not {"hidden", "cell"}.issubset(state.keys()):
raise ValueError(
f"Expected to find keys 'hidden' and 'cell' but instead found {state.keys()}",
)
obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32)
# obs [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
if len(obs.shape) == 2:
obs = obs.unsqueeze(-2)
obs = self.fc1(obs)
self.nn.flatten_parameters()
if state is None:
obs, (hidden, cell) = self.nn(obs)
else:
# we store the stack data in [bsz, len, ...] format
# but pytorch rnn needs [len, bsz, ...]
obs, (hidden, cell) = self.nn(
obs,
(
state["hidden"].transpose(0, 1).contiguous(),
state["cell"].transpose(0, 1).contiguous(),
),
)
obs = self.fc2(obs[:, -1])
# please ensure the first dim is batch size: [bsz, len, ...]
rnn_state_batch = cast(
RecurrentStateBatch,
Batch(
{
"hidden": hidden.transpose(0, 1).detach(),
"cell": cell.transpose(0, 1).detach(),
},
),
)
return obs, rnn_state_batch
class ActorCritic(nn.Module):
"""An actor-critic network for parsing parameters.
Using ``actor_critic.parameters()`` instead of set.union or list+list to avoid
issue #449.
:param nn.Module actor: the actor network.
:param nn.Module critic: the critic network.
"""
def __init__(self, actor: nn.Module, critic: nn.Module) -> None:
super().__init__()
self.actor = actor
self.critic = critic
class DataParallelNet(nn.Module):
"""DataParallel wrapper for training agent with multi-GPU.
This class does only the conversion of input data type, from numpy array to torch's
Tensor. If the input is a nested dictionary, the user should create a similar class
to do the same thing.
:param nn.Module net: the network to be distributed in different GPUs.
"""
def __init__(self, net: nn.Module) -> None:
super().__init__()
self.net = nn.DataParallel(net)
def forward(
self,
obs: np.ndarray | torch.Tensor,
*args: Any,
**kwargs: Any,
) -> tuple[Any, Any]:
if not isinstance(obs, torch.Tensor):
obs = torch.as_tensor(obs, dtype=torch.float32)
return self.net(obs=obs.cuda(), *args, **kwargs) # noqa: B026
class EnsembleLinear(nn.Module):
"""Linear Layer of Ensemble network.
:param ensemble_size: Number of subnets in the ensemble.
:param in_feature: dimension of the input vector.
:param out_feature: dimension of the output vector.
:param bias: whether to include an additive bias, default to be True.
"""
def __init__(
self,
ensemble_size: int,
in_feature: int,
out_feature: int,
bias: bool = True,
) -> None:
super().__init__()
# To be consistent with PyTorch default initializer
k = np.sqrt(1.0 / in_feature)
weight_data = torch.rand((ensemble_size, in_feature, out_feature)) * 2 * k - k
self.weight = nn.Parameter(weight_data, requires_grad=True)
self.bias_weights: nn.Parameter | None = None
if bias:
bias_data = torch.rand((ensemble_size, 1, out_feature)) * 2 * k - k
self.bias_weights = nn.Parameter(bias_data, requires_grad=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = torch.matmul(x, self.weight)
if self.bias_weights is not None:
x = x + self.bias_weights
return x
# TODO: fix docstring
class BranchingNet(NetBase[Any]):
"""Branching dual Q network.
Network for the BranchingDQNPolicy, it uses a common network module, a value module
and action "branches" one for each dimension.It allows for a linear scaling
of Q-value the output w.r.t. the number of dimensions in the action space.
For more info please refer to: arXiv:1711.08946.
:param state_shape: int or a sequence of int of the shape of state.
:param action_shape: int or a sequence of int of the shape of action.
:param action_peer_branch: int or a sequence of int of the number of actions in
each dimension.
:param common_hidden_sizes: shape of the common MLP network passed in as a list.
:param value_hidden_sizes: shape of the value MLP network passed in as a list.
:param action_hidden_sizes: shape of the action MLP network passed in as a list.
:param norm_layer: use which normalization before activation, e.g.,
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization.
You can also pass a list of normalization modules with the same length
of hidden_sizes, to use different normalization module in different
layers. Default to no normalization.
:param activation: which activation to use after each layer, can be both
the same activation for all layers if passed in nn.Module, or different
activation for different Modules if passed in a list. Default to
nn.ReLU.
:param device: specify the device when the network actually runs. Default
to "cpu".
:param softmax: whether to apply a softmax layer over the last layer's
output.
"""
def __init__(
self,
state_shape: int | Sequence[int],
num_branches: int = 0,
action_per_branch: int = 2,
common_hidden_sizes: list[int] | None = None,
value_hidden_sizes: list[int] | None = None,
action_hidden_sizes: list[int] | None = None,
norm_layer: ModuleType | None = None,
norm_args: ArgsType | None = None,
activation: ModuleType | None = nn.ReLU,
act_args: ArgsType | None = None,
device: str | int | torch.device = "cpu",
) -> None:
super().__init__()
common_hidden_sizes = common_hidden_sizes or []
value_hidden_sizes = value_hidden_sizes or []
action_hidden_sizes = action_hidden_sizes or []
self.device = device
self.num_branches = num_branches
self.action_per_branch = action_per_branch
# common network
common_input_dim = int(np.prod(state_shape))
common_output_dim = 0
self.common = MLP(
common_input_dim,
common_output_dim,
common_hidden_sizes,
norm_layer,
norm_args,
activation,
act_args,
device,
)
# value network
value_input_dim = common_hidden_sizes[-1]
value_output_dim = 1
self.value = MLP(
value_input_dim,
value_output_dim,
value_hidden_sizes,
norm_layer,
norm_args,
activation,
act_args,
device,
)
# action branching network
action_input_dim = common_hidden_sizes[-1]
action_output_dim = action_per_branch
self.branches = nn.ModuleList(
[
MLP(
action_input_dim,
action_output_dim,
action_hidden_sizes,
norm_layer,
norm_args,
activation,
act_args,
device,
)
for _ in range(self.num_branches)
],
)
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any = None,
info: dict[str, Any] | None = None,
) -> tuple[torch.Tensor, Any]:
"""Mapping: obs -> model -> logits."""
common_out = self.common(obs)
value_out = self.value(common_out)
value_out = torch.unsqueeze(value_out, 1)
action_out = []
for b in self.branches:
action_out.append(b(common_out))
action_scores = torch.stack(action_out, 1)
action_scores = action_scores - torch.mean(action_scores, 2, keepdim=True)
logits = value_out + action_scores
return logits, state
def get_dict_state_decorator(
state_shape: dict[str, int | Sequence[int]],
keys: Sequence[str],
) -> tuple[Callable, int]:
"""A helper function to make Net or equivalent classes (e.g. Actor, Critic) applicable to dict state.
The first return item, ``decorator_fn``, will alter the implementation of forward
function of the given class by preprocessing the observation. The preprocessing is
basically flatten the observation and concatenate them based on the ``keys`` order.
The batch dimension is preserved if presented. The result observation shape will
be equal to ``new_state_shape``, the second return item.
:param state_shape: A dictionary indicating each state's shape
:param keys: A list of state's keys. The flatten observation will be according to
this list order.
:returns: a 2-items tuple ``decorator_fn`` and ``new_state_shape``
"""
original_shape = state_shape
flat_state_shapes = []
for k in keys:
flat_state_shapes.append(int(np.prod(state_shape[k])))
new_state_shape = sum(flat_state_shapes)
def preprocess_obs(obs: Batch | dict | torch.Tensor | np.ndarray) -> torch.Tensor:
if isinstance(obs, dict) or (isinstance(obs, Batch) and keys[0] in obs):
if original_shape[keys[0]] == obs[keys[0]].shape:
# No batch dim
new_obs = torch.Tensor([obs[k] for k in keys]).flatten()
# new_obs = torch.Tensor([obs[k] for k in keys]).reshape(1, -1)
else:
bsz = obs[keys[0]].shape[0]
new_obs = torch.cat([torch.Tensor(obs[k].reshape(bsz, -1)) for k in keys], dim=1)
else:
new_obs = torch.Tensor(obs)
return new_obs
@no_type_check
def decorator_fn(net_class):
class new_net_class(net_class):
def forward(self, obs: np.ndarray | torch.Tensor, *args, **kwargs) -> Any:
return super().forward(preprocess_obs(obs), *args, **kwargs)
return new_net_class
return decorator_fn, new_state_shape
class BaseActor(nn.Module, ABC):
@abstractmethod
def get_preprocess_net(self) -> nn.Module:
pass
@abstractmethod
def get_output_dim(self) -> int:
pass
@abstractmethod
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any = None,
info: dict[str, Any] | None = None,
) -> tuple[Any, Any]:
# TODO: ALGO-REFACTORING. Marked to be addressed as part of Algorithm abstraction.
# Return type needs to be more specific
pass
def getattr_with_matching_alt_value(obj: Any, attr_name: str, alt_value: T | None) -> T:
"""Gets the given attribute from the given object or takes the alternative value if it is not present.
If both are present, they are required to match.
:param obj: the object from which to obtain the attribute value
:param attr_name: the attribute name
:param alt_value: the alternative value for the case where the attribute is not present, which cannot be None
if the attribute is not present
:return: the value
"""
v = getattr(obj, attr_name)
if v is not None:
if alt_value is not None and v != alt_value:
raise ValueError(
f"Attribute '{attr_name}' of {obj} is defined ({v}) but does not match alt. value ({alt_value})",
)
return v
else:
if alt_value is None:
raise ValueError(
f"Attribute '{attr_name}' of {obj} is not defined and no fallback given",
)
return alt_value
def get_output_dim(module: nn.Module, alt_value: int | None) -> int:
"""Retrieves value the `output_dim` attribute of the given module or uses the given alternative value if the attribute is not present.
If both are present, they must match.
:param module: the module
:param alt_value: the alternative value
:return: the value
"""
return getattr_with_matching_alt_value(module, "output_dim", alt_value)
|