File size: 18,864 Bytes
9b19c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import warnings
from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import Any
import numpy as np
import torch
from torch import nn
from tianshou.utils.net.common import (
MLP,
BaseActor,
Net,
TActionShape,
TLinearLayer,
get_output_dim,
)
from tianshou.utils.pickle import setstate
SIGMA_MIN = -20
SIGMA_MAX = 2
class Actor(BaseActor):
"""Simple actor network that directly outputs actions for continuous action space.
Used primarily in DDPG and its variants. For probabilistic policies, see :class:`~ActorProb`.
It will create an actor operated in continuous action space with structure of preprocess_net ---> action_shape.
:param preprocess_net: a self-defined preprocess_net, see usage.
Typically, an instance of :class:`~tianshou.utils.net.common.Net`.
:param action_shape: a sequence of int for the shape of action.
:param hidden_sizes: a sequence of int for constructing the MLP after
preprocess_net.
:param max_action: the scale for the final action.
:param preprocess_net_output_dim: the output dimension of
`preprocess_net`. Only used when `preprocess_net` does not have the attribute `output_dim`.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
preprocess_net: nn.Module | Net,
action_shape: TActionShape,
hidden_sizes: Sequence[int] = (),
max_action: float = 1.0,
device: str | int | torch.device = "cpu",
preprocess_net_output_dim: int | None = None,
) -> None:
super().__init__()
self.device = device
self.preprocess = preprocess_net
self.output_dim = int(np.prod(action_shape))
input_dim = get_output_dim(preprocess_net, preprocess_net_output_dim)
self.last = MLP(
input_dim,
self.output_dim,
hidden_sizes,
device=self.device,
)
self.max_action = max_action
def get_preprocess_net(self) -> nn.Module:
return self.preprocess
def get_output_dim(self) -> int:
return self.output_dim
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any = None,
info: dict[str, Any] | None = None,
) -> tuple[torch.Tensor, Any]:
"""Mapping: s_B -> action_values_BA, hidden_state_BH | None.
Returns a tensor representing the actions directly, i.e, of shape
`(n_actions, )`, and a hidden state (which may be None).
The hidden state is only not None if a recurrent net is used as part of the
learning algorithm (support for RNNs is currently experimental).
"""
action_BA, hidden_BH = self.preprocess(obs, state)
action_BA = self.max_action * torch.tanh(self.last(action_BA))
return action_BA, hidden_BH
class CriticBase(nn.Module, ABC):
@abstractmethod
def forward(
self,
obs: np.ndarray | torch.Tensor,
act: np.ndarray | torch.Tensor | None = None,
info: dict[str, Any] | None = None,
) -> torch.Tensor:
"""Mapping: (s_B, a_B) -> Q(s, a)_B."""
class Critic(CriticBase):
"""Simple critic network.
It will create an actor operated in continuous action space with structure of preprocess_net ---> 1(q value).
:param preprocess_net: a self-defined preprocess_net, see usage.
Typically, an instance of :class:`~tianshou.utils.net.common.Net`.
:param hidden_sizes: a sequence of int for constructing the MLP after
preprocess_net.
:param preprocess_net_output_dim: the output dimension of
`preprocess_net`. Only used when `preprocess_net` does not have the attribute `output_dim`.
:param linear_layer: use this module as linear layer.
:param flatten_input: whether to flatten input data for the last layer.
:param apply_preprocess_net_to_obs_only: whether to apply `preprocess_net` to the observations only (before
concatenating with the action) - and without the observations being modified in any way beforehand.
This allows the actor's preprocessing network to be reused for the critic.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
preprocess_net: nn.Module | Net,
hidden_sizes: Sequence[int] = (),
device: str | int | torch.device = "cpu",
preprocess_net_output_dim: int | None = None,
linear_layer: TLinearLayer = nn.Linear,
flatten_input: bool = True,
apply_preprocess_net_to_obs_only: bool = False,
) -> None:
super().__init__()
self.device = device
self.preprocess = preprocess_net
self.output_dim = 1
self.apply_preprocess_net_to_obs_only = apply_preprocess_net_to_obs_only
input_dim = get_output_dim(preprocess_net, preprocess_net_output_dim)
self.last = MLP(
input_dim,
1,
hidden_sizes,
device=self.device,
linear_layer=linear_layer,
flatten_input=flatten_input,
)
def __setstate__(self, state: dict) -> None:
setstate(
Critic,
self,
state,
new_default_properties={"apply_preprocess_net_to_obs_only": False},
)
def forward(
self,
obs: np.ndarray | torch.Tensor,
act: np.ndarray | torch.Tensor | None = None,
info: dict[str, Any] | None = None,
) -> torch.Tensor:
"""Mapping: (s_B, a_B) -> Q(s, a)_B."""
obs = torch.as_tensor(
obs,
device=self.device,
dtype=torch.float32,
)
if self.apply_preprocess_net_to_obs_only:
obs, _ = self.preprocess(obs)
obs = obs.flatten(1)
if act is not None:
act = torch.as_tensor(
act,
device=self.device,
dtype=torch.float32,
).flatten(1)
obs = torch.cat([obs, act], dim=1)
if not self.apply_preprocess_net_to_obs_only:
obs, _ = self.preprocess(obs)
return self.last(obs)
class ActorProb(BaseActor):
"""Simple actor network that outputs `mu` and `sigma` to be used as input for a `dist_fn` (typically, a Gaussian).
Used primarily in SAC, PPO and variants thereof. For deterministic policies, see :class:`~Actor`.
:param preprocess_net: a self-defined preprocess_net, see usage.
Typically, an instance of :class:`~tianshou.utils.net.common.Net`.
:param action_shape: a sequence of int for the shape of action.
:param hidden_sizes: a sequence of int for constructing the MLP after
preprocess_net.
:param max_action: the scale for the final action logits.
:param unbounded: whether to apply tanh activation on final logits.
:param conditioned_sigma: True when sigma is calculated from the
input, False when sigma is an independent parameter.
:param preprocess_net_output_dim: the output dimension of
`preprocess_net`. Only used when `preprocess_net` does not have the attribute `output_dim`.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
# TODO: force kwargs, adjust downstream code
def __init__(
self,
preprocess_net: nn.Module | Net,
action_shape: TActionShape,
hidden_sizes: Sequence[int] = (),
max_action: float = 1.0,
device: str | int | torch.device = "cpu",
unbounded: bool = False,
conditioned_sigma: bool = False,
preprocess_net_output_dim: int | None = None,
) -> None:
super().__init__()
if unbounded and not np.isclose(max_action, 1.0):
warnings.warn("Note that max_action input will be discarded when unbounded is True.")
max_action = 1.0
self.preprocess = preprocess_net
self.device = device
self.output_dim = int(np.prod(action_shape))
input_dim = get_output_dim(preprocess_net, preprocess_net_output_dim)
self.mu = MLP(input_dim, self.output_dim, hidden_sizes, device=self.device)
self._c_sigma = conditioned_sigma
if conditioned_sigma:
self.sigma = MLP(
input_dim,
self.output_dim,
hidden_sizes,
device=self.device,
)
else:
self.sigma_param = nn.Parameter(torch.zeros(self.output_dim, 1))
self.max_action = max_action
self._unbounded = unbounded
def get_preprocess_net(self) -> nn.Module:
return self.preprocess
def get_output_dim(self) -> int:
return self.output_dim
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any = None,
info: dict[str, Any] | None = None,
) -> tuple[tuple[torch.Tensor, torch.Tensor], Any]:
"""Mapping: obs -> logits -> (mu, sigma)."""
if info is None:
info = {}
logits, hidden = self.preprocess(obs, state)
mu = self.mu(logits)
if not self._unbounded:
mu = self.max_action * torch.tanh(mu)
if self._c_sigma:
sigma = torch.clamp(self.sigma(logits), min=SIGMA_MIN, max=SIGMA_MAX).exp()
else:
shape = [1] * len(mu.shape)
shape[1] = -1
sigma = (self.sigma_param.view(shape) + torch.zeros_like(mu)).exp()
return (mu, sigma), state
class RecurrentActorProb(nn.Module):
"""Recurrent version of ActorProb.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
layer_num: int,
state_shape: Sequence[int],
action_shape: Sequence[int],
hidden_layer_size: int = 128,
max_action: float = 1.0,
device: str | int | torch.device = "cpu",
unbounded: bool = False,
conditioned_sigma: bool = False,
) -> None:
super().__init__()
if unbounded and not np.isclose(max_action, 1.0):
warnings.warn("Note that max_action input will be discarded when unbounded is True.")
max_action = 1.0
self.device = device
self.nn = nn.LSTM(
input_size=int(np.prod(state_shape)),
hidden_size=hidden_layer_size,
num_layers=layer_num,
batch_first=True,
)
output_dim = int(np.prod(action_shape))
self.mu = nn.Linear(hidden_layer_size, output_dim)
self._c_sigma = conditioned_sigma
if conditioned_sigma:
self.sigma = nn.Linear(hidden_layer_size, output_dim)
else:
self.sigma_param = nn.Parameter(torch.zeros(output_dim, 1))
self.max_action = max_action
self._unbounded = unbounded
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: dict[str, torch.Tensor] | None = None,
info: dict[str, Any] | None = None,
) -> tuple[tuple[torch.Tensor, torch.Tensor], dict[str, torch.Tensor]]:
"""Almost the same as :class:`~tianshou.utils.net.common.Recurrent`."""
if info is None:
info = {}
obs = torch.as_tensor(
obs,
device=self.device,
dtype=torch.float32,
)
# obs [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
if len(obs.shape) == 2:
obs = obs.unsqueeze(-2)
self.nn.flatten_parameters()
if state is None:
obs, (hidden, cell) = self.nn(obs)
else:
# we store the stack data in [bsz, len, ...] format
# but pytorch rnn needs [len, bsz, ...]
obs, (hidden, cell) = self.nn(
obs,
(
state["hidden"].transpose(0, 1).contiguous(),
state["cell"].transpose(0, 1).contiguous(),
),
)
logits = obs[:, -1]
mu = self.mu(logits)
if not self._unbounded:
mu = self.max_action * torch.tanh(mu)
if self._c_sigma:
sigma = torch.clamp(self.sigma(logits), min=SIGMA_MIN, max=SIGMA_MAX).exp()
else:
shape = [1] * len(mu.shape)
shape[1] = -1
sigma = (self.sigma_param.view(shape) + torch.zeros_like(mu)).exp()
# please ensure the first dim is batch size: [bsz, len, ...]
return (mu, sigma), {
"hidden": hidden.transpose(0, 1).detach(),
"cell": cell.transpose(0, 1).detach(),
}
class RecurrentCritic(nn.Module):
"""Recurrent version of Critic.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
layer_num: int,
state_shape: Sequence[int],
action_shape: Sequence[int] = [0],
device: str | int | torch.device = "cpu",
hidden_layer_size: int = 128,
) -> None:
super().__init__()
self.state_shape = state_shape
self.action_shape = action_shape
self.device = device
self.nn = nn.LSTM(
input_size=int(np.prod(state_shape)),
hidden_size=hidden_layer_size,
num_layers=layer_num,
batch_first=True,
)
self.fc2 = nn.Linear(hidden_layer_size + int(np.prod(action_shape)), 1)
def forward(
self,
obs: np.ndarray | torch.Tensor,
act: np.ndarray | torch.Tensor | None = None,
info: dict[str, Any] | None = None,
) -> torch.Tensor:
"""Almost the same as :class:`~tianshou.utils.net.common.Recurrent`."""
if info is None:
info = {}
obs = torch.as_tensor(
obs,
device=self.device,
dtype=torch.float32,
)
# obs [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
assert len(obs.shape) == 3
self.nn.flatten_parameters()
obs, (hidden, cell) = self.nn(obs)
obs = obs[:, -1]
if act is not None:
act = torch.as_tensor(
act,
device=self.device,
dtype=torch.float32,
)
obs = torch.cat([obs, act], dim=1)
return self.fc2(obs)
class Perturbation(nn.Module):
"""Implementation of perturbation network in BCQ algorithm.
Given a state and action, it can generate perturbed action.
:param preprocess_net: a self-defined preprocess_net which output a
flattened hidden state.
:param max_action: the maximum value of each dimension of action.
:param device: which device to create this model on.
:param phi: max perturbation parameter for BCQ.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
.. seealso::
You can refer to `examples/offline/offline_bcq.py` to see how to use it.
"""
def __init__(
self,
preprocess_net: nn.Module,
max_action: float,
device: str | int | torch.device = "cpu",
phi: float = 0.05,
):
# preprocess_net: input_dim=state_dim+action_dim, output_dim=action_dim
super().__init__()
self.preprocess_net = preprocess_net
self.device = device
self.max_action = max_action
self.phi = phi
def forward(self, state: torch.Tensor, action: torch.Tensor) -> torch.Tensor:
# preprocess_net
logits = self.preprocess_net(torch.cat([state, action], -1))[0]
noise = self.phi * self.max_action * torch.tanh(logits)
# clip to [-max_action, max_action]
return (noise + action).clamp(-self.max_action, self.max_action)
class VAE(nn.Module):
"""Implementation of VAE.
It models the distribution of action. Given a state, it can generate actions similar to those in batch.
It is used in BCQ algorithm.
:param encoder: the encoder in VAE. Its input_dim must be
state_dim + action_dim, and output_dim must be hidden_dim.
:param decoder: the decoder in VAE. Its input_dim must be
state_dim + latent_dim, and output_dim must be action_dim.
:param hidden_dim: the size of the last linear-layer in encoder.
:param latent_dim: the size of latent layer.
:param max_action: the maximum value of each dimension of action.
:param device: which device to create this model on.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
.. seealso::
You can refer to `examples/offline/offline_bcq.py` to see how to use it.
"""
def __init__(
self,
encoder: nn.Module,
decoder: nn.Module,
hidden_dim: int,
latent_dim: int,
max_action: float,
device: str | torch.device = "cpu",
):
super().__init__()
self.encoder = encoder
self.mean = nn.Linear(hidden_dim, latent_dim)
self.log_std = nn.Linear(hidden_dim, latent_dim)
self.decoder = decoder
self.max_action = max_action
self.latent_dim = latent_dim
self.device = device
def forward(
self,
state: torch.Tensor,
action: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# [state, action] -> z , [state, z] -> action
latent_z = self.encoder(torch.cat([state, action], -1))
# shape of z: (state.shape[:-1], hidden_dim)
mean = self.mean(latent_z)
# Clamped for numerical stability
log_std = self.log_std(latent_z).clamp(-4, 15)
std = torch.exp(log_std)
# shape of mean, std: (state.shape[:-1], latent_dim)
latent_z = mean + std * torch.randn_like(std) # (state.shape[:-1], latent_dim)
reconstruction = self.decode(state, latent_z) # (state.shape[:-1], action_dim)
return reconstruction, mean, std
def decode(
self,
state: torch.Tensor,
latent_z: torch.Tensor | None = None,
) -> torch.Tensor:
# decode(state) -> action
if latent_z is None:
# state.shape[0] may be batch_size
# latent vector clipped to [-0.5, 0.5]
latent_z = (
torch.randn(state.shape[:-1] + (self.latent_dim,)).to(self.device).clamp(-0.5, 0.5)
)
# decode z with state!
return self.max_action * torch.tanh(self.decoder(torch.cat([state, latent_z], -1)))
|