File size: 21,652 Bytes
9b19c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
from collections.abc import Sequence
from typing import Any

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn

from tianshou.data import Batch, to_torch
from tianshou.utils.net.common import MLP, BaseActor, Net, TActionShape, get_output_dim


class Actor(BaseActor):
    """Simple actor network for discrete action spaces.

    :param preprocess_net: a self-defined preprocess_net. Typically, an instance of
        :class:`~tianshou.utils.net.common.Net`.
    :param action_shape: a sequence of int for the shape of action.
    :param hidden_sizes: a sequence of int for constructing the MLP after
        preprocess_net. Default to empty sequence (where the MLP now contains
        only a single linear layer).
    :param softmax_output: whether to apply a softmax layer over the last
        layer's output.
    :param preprocess_net_output_dim: the output dimension of
        `preprocess_net`. Only used when `preprocess_net` does not have the attribute `output_dim`.

    For advanced usage (how to customize the network), please refer to
    :ref:`build_the_network`.
    """

    def __init__(
        self,
        preprocess_net: nn.Module | Net,
        action_shape: TActionShape,
        hidden_sizes: Sequence[int] = (),
        softmax_output: bool = True,
        preprocess_net_output_dim: int | None = None,
        device: str | int | torch.device = "cpu",
    ) -> None:
        super().__init__()
        # TODO: reduce duplication with continuous.py. Probably introducing
        #   base classes is a good idea.
        self.device = device
        self.preprocess = preprocess_net
        self.output_dim = int(np.prod(action_shape))
        input_dim = get_output_dim(preprocess_net, preprocess_net_output_dim)
        self.last = MLP(
            input_dim,
            self.output_dim,
            hidden_sizes,
            device=self.device,
        )
        self.softmax_output = softmax_output

    def get_preprocess_net(self) -> nn.Module:
        return self.preprocess

    def get_output_dim(self) -> int:
        return self.output_dim

    def forward(
        self,
        obs: np.ndarray | torch.Tensor,
        state: Any = None,
        info: dict[str, Any] | None = None,
    ) -> tuple[torch.Tensor, torch.Tensor | None]:
        r"""Mapping: s_B -> action_values_BA, hidden_state_BH | None.

        Returns a tensor representing the values of each action, i.e, of shape
        `(n_actions, )`, and
        a hidden state (which may be None). If `self.softmax_output` is True, they are the
        probabilities for taking each action. Otherwise, they will be action values.
        The hidden state is only
        not None if a recurrent net is used as part of the learning algorithm.
        """
        x, hidden_BH = self.preprocess(obs, state)
        x = self.last(x)
        if self.softmax_output:
            x = F.softmax(x, dim=-1)
        # If we computed softmax, output is probabilities, otherwise it's the non-normalized action values
        output_BA = x
        return output_BA, hidden_BH


class Critic(nn.Module):
    """Simple critic network for discrete action spaces.

    :param preprocess_net: a self-defined preprocess_net. Typically, an instance of
        :class:`~tianshou.utils.net.common.Net`.
    :param hidden_sizes: a sequence of int for constructing the MLP after
        preprocess_net. Default to empty sequence (where the MLP now contains
        only a single linear layer).
    :param last_size: the output dimension of Critic network. Default to 1.
    :param preprocess_net_output_dim: the output dimension of
        `preprocess_net`. Only used when `preprocess_net` does not have the attribute `output_dim`.

    For advanced usage (how to customize the network), please refer to
    :ref:`build_the_network`..
    """

    def __init__(
        self,
        preprocess_net: nn.Module | Net,
        hidden_sizes: Sequence[int] = (),
        last_size: int = 1,
        preprocess_net_output_dim: int | None = None,
        device: str | int | torch.device = "cpu",
    ) -> None:
        super().__init__()
        self.device = device
        self.preprocess = preprocess_net
        self.output_dim = last_size
        input_dim = get_output_dim(preprocess_net, preprocess_net_output_dim)
        self.last = MLP(input_dim, last_size, hidden_sizes, device=self.device)

    # TODO: make a proper interface!
    def forward(self, obs: np.ndarray | torch.Tensor, **kwargs: Any) -> torch.Tensor:
        """Mapping: s_B -> V(s)_B."""
        # TODO: don't use this mechanism for passing state
        logits, _ = self.preprocess(obs, state=kwargs.get("state", None))
        return self.last(logits)


class CosineEmbeddingNetwork(nn.Module):
    """Cosine embedding network for IQN. Convert a scalar in [0, 1] to a list of n-dim vectors.

    :param num_cosines: the number of cosines used for the embedding.
    :param embedding_dim: the dimension of the embedding/output.

    .. note::

        From https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/blob/master
        /fqf_iqn_qrdqn/network.py .
    """

    def __init__(self, num_cosines: int, embedding_dim: int) -> None:
        super().__init__()
        self.net = nn.Sequential(nn.Linear(num_cosines, embedding_dim), nn.ReLU())
        self.num_cosines = num_cosines
        self.embedding_dim = embedding_dim

    def forward(self, taus: torch.Tensor) -> torch.Tensor:
        batch_size = taus.shape[0]
        N = taus.shape[1]
        # Calculate i * \pi (i=1,...,N).
        i_pi = np.pi * torch.arange(
            start=1,
            end=self.num_cosines + 1,
            dtype=taus.dtype,
            device=taus.device,
        ).view(1, 1, self.num_cosines)
        # Calculate cos(i * \pi * \tau).
        cosines = torch.cos(taus.view(batch_size, N, 1) * i_pi).view(
            batch_size * N,
            self.num_cosines,
        )
        # Calculate embeddings of taus.
        return self.net(cosines).view(batch_size, N, self.embedding_dim)


class ImplicitQuantileNetwork(Critic):
    """Implicit Quantile Network.

    :param preprocess_net: a self-defined preprocess_net which output a
        flattened hidden state.
    :param action_shape: a sequence of int for the shape of action.
    :param hidden_sizes: a sequence of int for constructing the MLP after
        preprocess_net. Default to empty sequence (where the MLP now contains
        only a single linear layer).
    :param num_cosines: the number of cosines to use for cosine embedding.
        Default to 64.
    :param preprocess_net_output_dim: the output dimension of
        preprocess_net.

    .. note::

        Although this class inherits Critic, it is actually a quantile Q-Network
        with output shape (batch_size, action_dim, sample_size).

        The second item of the first return value is tau vector.
    """

    def __init__(
        self,
        preprocess_net: nn.Module,
        action_shape: TActionShape,
        hidden_sizes: Sequence[int] = (),
        num_cosines: int = 64,
        preprocess_net_output_dim: int | None = None,
        device: str | int | torch.device = "cpu",
    ) -> None:
        last_size = int(np.prod(action_shape))
        super().__init__(preprocess_net, hidden_sizes, last_size, preprocess_net_output_dim, device)
        self.input_dim = get_output_dim(preprocess_net, preprocess_net_output_dim)
        self.embed_model = CosineEmbeddingNetwork(num_cosines, self.input_dim).to(
            device,
        )

    def forward(  # type: ignore
        self,
        obs: np.ndarray | torch.Tensor,
        sample_size: int,
        **kwargs: Any,
    ) -> tuple[Any, torch.Tensor]:
        r"""Mapping: s -> Q(s, \*)."""
        logits, hidden = self.preprocess(obs, state=kwargs.get("state", None))
        # Sample fractions.
        batch_size = logits.size(0)
        taus = torch.rand(batch_size, sample_size, dtype=logits.dtype, device=logits.device)
        embedding = (logits.unsqueeze(1) * self.embed_model(taus)).view(
            batch_size * sample_size,
            -1,
        )
        out = self.last(embedding).view(batch_size, sample_size, -1).transpose(1, 2)
        return (out, taus), hidden


class FractionProposalNetwork(nn.Module):
    """Fraction proposal network for FQF.

    :param num_fractions: the number of factions to propose.
    :param embedding_dim: the dimension of the embedding/input.

    .. note::

        Adapted from https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/blob/master
        /fqf_iqn_qrdqn/network.py .
    """

    def __init__(self, num_fractions: int, embedding_dim: int) -> None:
        super().__init__()
        self.net = nn.Linear(embedding_dim, num_fractions)
        torch.nn.init.xavier_uniform_(self.net.weight, gain=0.01)
        torch.nn.init.constant_(self.net.bias, 0)
        self.num_fractions = num_fractions
        self.embedding_dim = embedding_dim

    def forward(
        self,
        obs_embeddings: torch.Tensor,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        # Calculate (log of) probabilities q_i in the paper.
        dist = torch.distributions.Categorical(logits=self.net(obs_embeddings))
        taus_1_N = torch.cumsum(dist.probs, dim=1)
        # Calculate \tau_i (i=0,...,N).
        taus = F.pad(taus_1_N, (1, 0))
        # Calculate \hat \tau_i (i=0,...,N-1).
        tau_hats = (taus[:, :-1] + taus[:, 1:]).detach() / 2.0
        # Calculate entropies of value distributions.
        entropies = dist.entropy()
        return taus, tau_hats, entropies


class FullQuantileFunction(ImplicitQuantileNetwork):
    """Full(y parameterized) Quantile Function.

    :param preprocess_net: a self-defined preprocess_net which output a
        flattened hidden state.
    :param action_shape: a sequence of int for the shape of action.
    :param hidden_sizes: a sequence of int for constructing the MLP after
        preprocess_net. Default to empty sequence (where the MLP now contains
        only a single linear layer).
    :param num_cosines: the number of cosines to use for cosine embedding.
        Default to 64.
    :param preprocess_net_output_dim: the output dimension of
        preprocess_net.

    .. note::

        The first return value is a tuple of (quantiles, fractions, quantiles_tau),
        where fractions is a Batch(taus, tau_hats, entropies).
    """

    def __init__(
        self,
        preprocess_net: nn.Module,
        action_shape: TActionShape,
        hidden_sizes: Sequence[int] = (),
        num_cosines: int = 64,
        preprocess_net_output_dim: int | None = None,
        device: str | int | torch.device = "cpu",
    ) -> None:
        super().__init__(
            preprocess_net,
            action_shape,
            hidden_sizes,
            num_cosines,
            preprocess_net_output_dim,
            device,
        )

    def _compute_quantiles(self, obs: torch.Tensor, taus: torch.Tensor) -> torch.Tensor:
        batch_size, sample_size = taus.shape
        embedding = (obs.unsqueeze(1) * self.embed_model(taus)).view(batch_size * sample_size, -1)
        return self.last(embedding).view(batch_size, sample_size, -1).transpose(1, 2)

    def forward(  # type: ignore
        self,
        obs: np.ndarray | torch.Tensor,
        propose_model: FractionProposalNetwork,
        fractions: Batch | None = None,
        **kwargs: Any,
    ) -> tuple[Any, torch.Tensor]:
        r"""Mapping: s -> Q(s, \*)."""
        logits, hidden = self.preprocess(obs, state=kwargs.get("state", None))
        # Propose fractions
        if fractions is None:
            taus, tau_hats, entropies = propose_model(logits.detach())
            fractions = Batch(taus=taus, tau_hats=tau_hats, entropies=entropies)
        else:
            taus, tau_hats = fractions.taus, fractions.tau_hats
        quantiles = self._compute_quantiles(logits, tau_hats)
        # Calculate quantiles_tau for computing fraction grad
        quantiles_tau = None
        if self.training:
            with torch.no_grad():
                quantiles_tau = self._compute_quantiles(logits, taus[:, 1:-1])
        return (quantiles, fractions, quantiles_tau), hidden





class FullQuantileFunctionRainbow(ImplicitQuantileNetwork):
    """Full(y parameterized) Quantile Function with Noisy Networks and Dueling option.

    :param preprocess_net: a self-defined preprocess_net which output a
        flattened hidden state.
    :param action_shape: a sequence of int for the shape of action.
    :param hidden_sizes: a sequence of int for constructing the MLP after
        preprocess_net. Default to empty sequence (where the MLP now contains
        only a single linear layer).
    :param num_cosines: the number of cosines to use for cosine embedding.
        Default to 64.
    :param preprocess_net_output_dim: the output dimension of
        preprocess_net.
    :param noisy_std: standard deviation for NoisyLinear layers. Default to 0.5.
    :param is_noisy: whether to use noisy layers. Default to True.

    .. note::

        The first return value is a tuple of (quantiles, fractions, quantiles_tau),
        where fractions is a Batch(taus, tau_hats, entropies).
    """

    def __init__(
        self,
        preprocess_net: nn.Module,
        action_shape: TActionShape,
        hidden_sizes: Sequence[int] = (),
        num_cosines: int = 64,
        preprocess_net_output_dim: int | None = None,
        device: str | int | torch.device = "cpu",
        noisy_std: float = 0.5,
        is_noisy: bool = True,
        is_dueling : bool = True
    ) -> None:
        super().__init__(
            preprocess_net,
            action_shape,
            hidden_sizes,
            num_cosines,
            preprocess_net_output_dim,
            device,
        )

        if preprocess_net_output_dim is None:
            raise ValueError("preprocess_net_output_dim must be specified and not None.")
        
        # print(f"preprocess_net_output_dim: {preprocess_net_output_dim}")
        # print(f"hidden_sizes: {hidden_sizes}")

        self.action_shape = action_shape
        self.noisy_std = noisy_std
        self.is_noisy = is_noisy
        self.is_dueling = is_dueling

        print(action_shape,noisy_std)
        print(preprocess_net_output_dim)

        def linear(x: int, y: int) -> nn.Module:
            if self.is_noisy:
                return NoisyLinear(x, y, self.noisy_std)
            return nn.Linear(x, y)

        # Define the advantage network

        self.advantage_net = nn.Sequential(
            linear(preprocess_net_output_dim, 512),
            nn.ReLU(inplace=True),
            linear(512, self.action_shape)
        )

        # print("Advantage net", self.advantage_net)
        

         # Define the value network for dueling architecture
        if self.is_dueling:
            self.value_net = nn.Sequential(
                linear(preprocess_net_output_dim, 512),
                nn.ReLU(inplace=True),
                linear(512, 1) # Output dimension is 1 for the value function
            )
            print("Dueling is True")


        # print("The value net", self.value_net)

        # if self.is_noisy:
        #     self.last = nn.Sequential(
        #     NoisyLinear(3136, 512),
        #     nn.ReLU(inplace=True),
        #     NoisyLinear(512, action_shape)
        #                             )

        # print(self.last)

        # self.embed_model = nn.Linear(num_cosines, preprocess_net_output_dim)

    def _compute_quantiles(self, obs: torch.Tensor, taus: torch.Tensor) -> torch.Tensor:
        batch_size, sample_size = taus.shape
        embedding = (obs.unsqueeze(1) * self.embed_model(taus)).view(batch_size * sample_size, -1)

        # Compute advantages
        advantage = self.advantage_net(embedding).view(batch_size, sample_size, -1).transpose(1, 2)

        if self.is_dueling:
            # Compute value
            value = self.value_net(embedding).view(batch_size, sample_size, 1).transpose(1, 2)
            # Combine value and advantage to compute quantiles
            quantiles = value + (advantage - advantage.mean(dim=1, keepdim=True))
        else:
            quantiles = advantage
        
        return quantiles

        # return self.last(embedding).view(batch_size, sample_size, -1).transpose(1, 2)




    def forward(
        self,
        obs: np.ndarray | torch.Tensor,
        propose_model: FractionProposalNetwork,
        fractions: Batch | None = None,
        **kwargs: Any,
    ) -> tuple[Any, torch.Tensor]:
        r"""Mapping: s -> Q(s, \*)."""
        logits, hidden = self.preprocess(obs, state=kwargs.get("state", None))
        # Propose fractions
        if fractions is None:
            taus, tau_hats, entropies = propose_model(logits.detach())
            fractions = Batch(taus=taus, tau_hats=tau_hats, entropies=entropies)
        else:
            taus, tau_hats = fractions.taus, fractions.tau_hats
        quantiles = self._compute_quantiles(logits, tau_hats)
        # Calculate quantiles_tau for computing fraction grad
        quantiles_tau = None
        if self.training:
            with torch.no_grad():
                quantiles_tau = self._compute_quantiles(logits, taus[:, 1:-1])
        return (quantiles, fractions, quantiles_tau), hidden


class NoisyLinear(nn.Module):
    """Implementation of Noisy Networks. arXiv:1706.10295.

    :param in_features: the number of input features.
    :param out_features: the number of output features.
    :param noisy_std: initial standard deviation of noisy linear layers.

    .. note::

        Adapted from https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/blob/master
        /fqf_iqn_qrdqn/network.py .
    """

    def __init__(self, in_features: int, out_features: int, noisy_std: float = 0.5) -> None:
        super().__init__()

        # Learnable parameters.
        self.mu_W = nn.Parameter(torch.FloatTensor(out_features, in_features))
        self.sigma_W = nn.Parameter(torch.FloatTensor(out_features, in_features))
        self.mu_bias = nn.Parameter(torch.FloatTensor(out_features))
        self.sigma_bias = nn.Parameter(torch.FloatTensor(out_features))

        # Factorized noise parameters.
        self.register_buffer("eps_p", torch.FloatTensor(in_features))
        self.register_buffer("eps_q", torch.FloatTensor(out_features))

        self.in_features = in_features
        self.out_features = out_features
        self.sigma = noisy_std

        self.reset()
        self.sample()

    def reset(self) -> None:
        bound = 1 / np.sqrt(self.in_features)
        self.mu_W.data.uniform_(-bound, bound)
        self.mu_bias.data.uniform_(-bound, bound)
        self.sigma_W.data.fill_(self.sigma / np.sqrt(self.in_features))
        self.sigma_bias.data.fill_(self.sigma / np.sqrt(self.in_features))

    def f(self, x: torch.Tensor) -> torch.Tensor:
        x = torch.randn(x.size(0), device=x.device)
        return x.sign().mul_(x.abs().sqrt_())

    # TODO: rename or change functionality? Usually sample is not an inplace operation...
    def sample(self) -> None:
        self.eps_p.copy_(self.f(self.eps_p))
        self.eps_q.copy_(self.f(self.eps_q))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.training:
            weight = self.mu_W + self.sigma_W * (self.eps_q.ger(self.eps_p))
            bias = self.mu_bias + self.sigma_bias * self.eps_q.clone()
        else:
            weight = self.mu_W
            bias = self.mu_bias

        return F.linear(x, weight, bias)


class IntrinsicCuriosityModule(nn.Module):
    """Implementation of Intrinsic Curiosity Module. arXiv:1705.05363.

    :param feature_net: a self-defined feature_net which output a
        flattened hidden state.
    :param feature_dim: input dimension of the feature net.
    :param action_dim: dimension of the action space.
    :param hidden_sizes: hidden layer sizes for forward and inverse models.
    :param device: device for the module.
    """

    def __init__(
        self,
        feature_net: nn.Module,
        feature_dim: int,
        action_dim: int,
        hidden_sizes: Sequence[int] = (),
        device: str | torch.device = "cpu",
    ) -> None:
        super().__init__()
        self.feature_net = feature_net
        self.forward_model = MLP(
            feature_dim + action_dim,
            output_dim=feature_dim,
            hidden_sizes=hidden_sizes,
            device=device,
        )
        self.inverse_model = MLP(
            feature_dim * 2,
            output_dim=action_dim,
            hidden_sizes=hidden_sizes,
            device=device,
        )
        self.feature_dim = feature_dim
        self.action_dim = action_dim
        self.device = device

    def forward(
        self,
        s1: np.ndarray | torch.Tensor,
        act: np.ndarray | torch.Tensor,
        s2: np.ndarray | torch.Tensor,
        **kwargs: Any,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        r"""Mapping: s1, act, s2 -> mse_loss, act_hat."""
        s1 = to_torch(s1, dtype=torch.float32, device=self.device)
        s2 = to_torch(s2, dtype=torch.float32, device=self.device)
        phi1, phi2 = self.feature_net(s1), self.feature_net(s2)
        act = to_torch(act, dtype=torch.long, device=self.device)
        phi2_hat = self.forward_model(
            torch.cat([phi1, F.one_hot(act, num_classes=self.action_dim)], dim=1),
        )
        mse_loss = 0.5 * F.mse_loss(phi2_hat, phi2, reduction="none").sum(1)
        act_hat = self.inverse_model(torch.cat([phi1, phi2], dim=1))
        return mse_loss, act_hat