|
import argparse |
|
import datetime |
|
import os |
|
import pprint |
|
import sys |
|
|
|
import numpy as np |
|
import torch |
|
from atari_network import C51 |
|
from atari_wrapper import make_atari_env |
|
|
|
from tianshou.data import Collector, VectorReplayBuffer |
|
from tianshou.highlevel.logger import LoggerFactoryDefault |
|
from tianshou.policy import C51Policy |
|
from tianshou.policy.base import BasePolicy |
|
from tianshou.trainer import OffpolicyTrainer |
|
|
|
|
|
def get_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--task", type=str, default="PongNoFrameskip-v4") |
|
parser.add_argument("--seed", type=int, default=0) |
|
parser.add_argument("--scale-obs", type=int, default=0) |
|
parser.add_argument("--eps-test", type=float, default=0.005) |
|
parser.add_argument("--eps-train", type=float, default=1.0) |
|
parser.add_argument("--eps-train-final", type=float, default=0.05) |
|
parser.add_argument("--buffer-size", type=int, default=100000) |
|
parser.add_argument("--lr", type=float, default=0.0001) |
|
parser.add_argument("--gamma", type=float, default=0.99) |
|
parser.add_argument("--num-atoms", type=int, default=51) |
|
parser.add_argument("--v-min", type=float, default=-10.0) |
|
parser.add_argument("--v-max", type=float, default=10.0) |
|
parser.add_argument("--n-step", type=int, default=3) |
|
parser.add_argument("--target-update-freq", type=int, default=500) |
|
parser.add_argument("--epoch", type=int, default=100) |
|
parser.add_argument("--step-per-epoch", type=int, default=100000) |
|
parser.add_argument("--step-per-collect", type=int, default=10) |
|
parser.add_argument("--update-per-step", type=float, default=0.1) |
|
parser.add_argument("--batch-size", type=int, default=32) |
|
parser.add_argument("--training-num", type=int, default=10) |
|
parser.add_argument("--test-num", type=int, default=10) |
|
parser.add_argument("--logdir", type=str, default="log") |
|
parser.add_argument("--render", type=float, default=0.0) |
|
parser.add_argument( |
|
"--device", |
|
type=str, |
|
default="cuda" if torch.cuda.is_available() else "cpu", |
|
) |
|
parser.add_argument("--frames-stack", type=int, default=4) |
|
parser.add_argument("--resume-path", type=str, default=None) |
|
parser.add_argument("--resume-id", type=str, default=None) |
|
parser.add_argument( |
|
"--logger", |
|
type=str, |
|
default="tensorboard", |
|
choices=["tensorboard", "wandb"], |
|
) |
|
parser.add_argument("--wandb-project", type=str, default="atari.benchmark") |
|
parser.add_argument( |
|
"--watch", |
|
default=False, |
|
action="store_true", |
|
help="watch the play of pre-trained policy only", |
|
) |
|
parser.add_argument("--save-buffer-name", type=str, default=None) |
|
return parser.parse_args() |
|
|
|
|
|
def test_c51(args: argparse.Namespace = get_args()) -> None: |
|
env, train_envs, test_envs = make_atari_env( |
|
args.task, |
|
args.seed, |
|
args.training_num, |
|
args.test_num, |
|
scale=args.scale_obs, |
|
frame_stack=args.frames_stack, |
|
) |
|
args.state_shape = env.observation_space.shape or env.observation_space.n |
|
args.action_shape = env.action_space.shape or env.action_space.n |
|
|
|
print("Observations shape:", args.state_shape) |
|
print("Actions shape:", args.action_shape) |
|
|
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
|
|
net = C51(*args.state_shape, args.action_shape, args.num_atoms, args.device) |
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr) |
|
|
|
policy: C51Policy = C51Policy( |
|
model=net, |
|
optim=optim, |
|
discount_factor=args.gamma, |
|
action_space=env.action_space, |
|
num_atoms=args.num_atoms, |
|
v_min=args.v_min, |
|
v_max=args.v_max, |
|
estimation_step=args.n_step, |
|
target_update_freq=args.target_update_freq, |
|
).to(args.device) |
|
|
|
if args.resume_path: |
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device)) |
|
print("Loaded agent from: ", args.resume_path) |
|
|
|
|
|
buffer = VectorReplayBuffer( |
|
args.buffer_size, |
|
buffer_num=len(train_envs), |
|
ignore_obs_next=True, |
|
save_only_last_obs=True, |
|
stack_num=args.frames_stack, |
|
) |
|
|
|
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) |
|
test_collector = Collector(policy, test_envs, exploration_noise=True) |
|
|
|
|
|
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S") |
|
args.algo_name = "c51" |
|
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now) |
|
log_path = os.path.join(args.logdir, log_name) |
|
|
|
|
|
logger_factory = LoggerFactoryDefault() |
|
if args.logger == "wandb": |
|
logger_factory.logger_type = "wandb" |
|
logger_factory.wandb_project = args.wandb_project |
|
else: |
|
logger_factory.logger_type = "tensorboard" |
|
|
|
logger = logger_factory.create_logger( |
|
log_dir=log_path, |
|
experiment_name=log_name, |
|
run_id=args.resume_id, |
|
config_dict=vars(args), |
|
) |
|
|
|
def save_best_fn(policy: BasePolicy) -> None: |
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) |
|
|
|
def stop_fn(mean_rewards: float) -> bool: |
|
if env.spec.reward_threshold: |
|
return mean_rewards >= env.spec.reward_threshold |
|
if "Pong" in args.task: |
|
return mean_rewards >= 20 |
|
return False |
|
|
|
def train_fn(epoch: int, env_step: int) -> None: |
|
|
|
if env_step <= 1e6: |
|
eps = args.eps_train - env_step / 1e6 * (args.eps_train - args.eps_train_final) |
|
else: |
|
eps = args.eps_train_final |
|
policy.set_eps(eps) |
|
if env_step % 1000 == 0: |
|
logger.write("train/env_step", env_step, {"train/eps": eps}) |
|
|
|
def test_fn(epoch: int, env_step: int | None) -> None: |
|
policy.set_eps(args.eps_test) |
|
|
|
|
|
def watch() -> None: |
|
print("Setup test envs ...") |
|
policy.set_eps(args.eps_test) |
|
test_envs.seed(args.seed) |
|
if args.save_buffer_name: |
|
print(f"Generate buffer with size {args.buffer_size}") |
|
buffer = VectorReplayBuffer( |
|
args.buffer_size, |
|
buffer_num=len(test_envs), |
|
ignore_obs_next=True, |
|
save_only_last_obs=True, |
|
stack_num=args.frames_stack, |
|
) |
|
collector = Collector(policy, test_envs, buffer, exploration_noise=True) |
|
result = collector.collect(n_step=args.buffer_size) |
|
print(f"Save buffer into {args.save_buffer_name}") |
|
|
|
buffer.save_hdf5(args.save_buffer_name) |
|
else: |
|
print("Testing agent ...") |
|
test_collector.reset() |
|
result = test_collector.collect(n_episode=args.test_num, render=args.render) |
|
result.pprint_asdict() |
|
|
|
if args.watch: |
|
watch() |
|
sys.exit(0) |
|
|
|
|
|
train_collector.reset() |
|
train_collector.collect(n_step=args.batch_size * args.training_num) |
|
|
|
result = OffpolicyTrainer( |
|
policy=policy, |
|
train_collector=train_collector, |
|
test_collector=test_collector, |
|
max_epoch=args.epoch, |
|
step_per_epoch=args.step_per_epoch, |
|
step_per_collect=args.step_per_collect, |
|
episode_per_test=args.test_num, |
|
batch_size=args.batch_size, |
|
train_fn=train_fn, |
|
test_fn=test_fn, |
|
stop_fn=stop_fn, |
|
save_best_fn=save_best_fn, |
|
logger=logger, |
|
update_per_step=args.update_per_step, |
|
test_in_train=False, |
|
).run() |
|
|
|
pprint.pprint(result) |
|
watch() |
|
|
|
|
|
if __name__ == "__main__": |
|
test_c51(get_args()) |
|
|