|
import argparse |
|
import datetime |
|
import os |
|
import pprint |
|
import sys |
|
|
|
import numpy as np |
|
import torch |
|
from atari_network import DQN |
|
from atari_wrapper import make_atari_env |
|
|
|
from tianshou.data import Collector, VectorReplayBuffer |
|
from tianshou.highlevel.logger import LoggerFactoryDefault |
|
from tianshou.policy import DiscreteSACPolicy, ICMPolicy |
|
from tianshou.policy.base import BasePolicy |
|
from tianshou.trainer import OffpolicyTrainer |
|
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule |
|
|
|
|
|
def get_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--task", type=str, default="PongNoFrameskip-v4") |
|
parser.add_argument("--seed", type=int, default=4213) |
|
parser.add_argument("--scale-obs", type=int, default=0) |
|
parser.add_argument("--buffer-size", type=int, default=100000) |
|
parser.add_argument("--actor-lr", type=float, default=1e-5) |
|
parser.add_argument("--critic-lr", type=float, default=1e-5) |
|
parser.add_argument("--gamma", type=float, default=0.99) |
|
parser.add_argument("--n-step", type=int, default=3) |
|
parser.add_argument("--tau", type=float, default=0.005) |
|
parser.add_argument("--alpha", type=float, default=0.05) |
|
parser.add_argument("--auto-alpha", action="store_true", default=False) |
|
parser.add_argument("--alpha-lr", type=float, default=3e-4) |
|
parser.add_argument("--epoch", type=int, default=100) |
|
parser.add_argument("--step-per-epoch", type=int, default=100000) |
|
parser.add_argument("--step-per-collect", type=int, default=10) |
|
parser.add_argument("--update-per-step", type=float, default=0.1) |
|
parser.add_argument("--batch-size", type=int, default=64) |
|
parser.add_argument("--hidden-size", type=int, default=512) |
|
parser.add_argument("--training-num", type=int, default=10) |
|
parser.add_argument("--test-num", type=int, default=10) |
|
parser.add_argument("--rew-norm", type=int, default=False) |
|
parser.add_argument("--logdir", type=str, default="log") |
|
parser.add_argument("--render", type=float, default=0.0) |
|
parser.add_argument( |
|
"--device", |
|
type=str, |
|
default="cuda" if torch.cuda.is_available() else "cpu", |
|
) |
|
parser.add_argument("--frames-stack", type=int, default=4) |
|
parser.add_argument("--resume-path", type=str, default=None) |
|
parser.add_argument("--resume-id", type=str, default=None) |
|
parser.add_argument( |
|
"--logger", |
|
type=str, |
|
default="tensorboard", |
|
choices=["tensorboard", "wandb"], |
|
) |
|
parser.add_argument("--wandb-project", type=str, default="atari.benchmark") |
|
parser.add_argument( |
|
"--watch", |
|
default=False, |
|
action="store_true", |
|
help="watch the play of pre-trained policy only", |
|
) |
|
parser.add_argument("--save-buffer-name", type=str, default=None) |
|
parser.add_argument( |
|
"--icm-lr-scale", |
|
type=float, |
|
default=0.0, |
|
help="use intrinsic curiosity module with this lr scale", |
|
) |
|
parser.add_argument( |
|
"--icm-reward-scale", |
|
type=float, |
|
default=0.01, |
|
help="scaling factor for intrinsic curiosity reward", |
|
) |
|
parser.add_argument( |
|
"--icm-forward-loss-weight", |
|
type=float, |
|
default=0.2, |
|
help="weight for the forward model loss in ICM", |
|
) |
|
return parser.parse_args() |
|
|
|
|
|
def test_discrete_sac(args: argparse.Namespace = get_args()) -> None: |
|
env, train_envs, test_envs = make_atari_env( |
|
args.task, |
|
args.seed, |
|
args.training_num, |
|
args.test_num, |
|
scale=args.scale_obs, |
|
frame_stack=args.frames_stack, |
|
) |
|
args.state_shape = env.observation_space.shape or env.observation_space.n |
|
args.action_shape = env.action_space.shape or env.action_space.n |
|
|
|
print("Observations shape:", args.state_shape) |
|
print("Actions shape:", args.action_shape) |
|
|
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
|
|
net = DQN( |
|
*args.state_shape, |
|
args.action_shape, |
|
device=args.device, |
|
features_only=True, |
|
output_dim_added_layer=args.hidden_size, |
|
) |
|
actor = Actor(net, args.action_shape, device=args.device, softmax_output=False) |
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) |
|
critic1 = Critic(net, last_size=args.action_shape, device=args.device) |
|
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) |
|
critic2 = Critic(net, last_size=args.action_shape, device=args.device) |
|
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) |
|
|
|
|
|
if args.auto_alpha: |
|
target_entropy = 0.98 * np.log(np.prod(args.action_shape)) |
|
log_alpha = torch.zeros(1, requires_grad=True, device=args.device) |
|
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr) |
|
args.alpha = (target_entropy, log_alpha, alpha_optim) |
|
|
|
policy: DiscreteSACPolicy | ICMPolicy |
|
policy = DiscreteSACPolicy( |
|
actor=actor, |
|
actor_optim=actor_optim, |
|
critic=critic1, |
|
critic_optim=critic1_optim, |
|
critic2=critic2, |
|
critic2_optim=critic2_optim, |
|
action_space=env.action_space, |
|
tau=args.tau, |
|
gamma=args.gamma, |
|
alpha=args.alpha, |
|
estimation_step=args.n_step, |
|
).to(args.device) |
|
if args.icm_lr_scale > 0: |
|
feature_net = DQN(*args.state_shape, args.action_shape, args.device, features_only=True) |
|
action_dim = np.prod(args.action_shape) |
|
feature_dim = feature_net.output_dim |
|
icm_net = IntrinsicCuriosityModule( |
|
feature_net.net, |
|
feature_dim, |
|
action_dim, |
|
hidden_sizes=[args.hidden_size], |
|
device=args.device, |
|
) |
|
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.actor_lr) |
|
policy = ICMPolicy( |
|
policy=policy, |
|
model=icm_net, |
|
optim=icm_optim, |
|
action_space=env.action_space, |
|
lr_scale=args.icm_lr_scale, |
|
reward_scale=args.icm_reward_scale, |
|
forward_loss_weight=args.icm_forward_loss_weight, |
|
).to(args.device) |
|
|
|
if args.resume_path: |
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device)) |
|
print("Loaded agent from: ", args.resume_path) |
|
|
|
|
|
buffer = VectorReplayBuffer( |
|
args.buffer_size, |
|
buffer_num=len(train_envs), |
|
ignore_obs_next=True, |
|
save_only_last_obs=True, |
|
stack_num=args.frames_stack, |
|
) |
|
|
|
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) |
|
test_collector = Collector(policy, test_envs, exploration_noise=True) |
|
|
|
|
|
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S") |
|
args.algo_name = "discrete_sac_icm" if args.icm_lr_scale > 0 else "discrete_sac" |
|
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now) |
|
log_path = os.path.join(args.logdir, log_name) |
|
|
|
|
|
logger_factory = LoggerFactoryDefault() |
|
if args.logger == "wandb": |
|
logger_factory.logger_type = "wandb" |
|
logger_factory.wandb_project = args.wandb_project |
|
else: |
|
logger_factory.logger_type = "tensorboard" |
|
|
|
logger = logger_factory.create_logger( |
|
log_dir=log_path, |
|
experiment_name=log_name, |
|
run_id=args.resume_id, |
|
config_dict=vars(args), |
|
) |
|
|
|
def save_best_fn(policy: BasePolicy) -> None: |
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) |
|
|
|
def stop_fn(mean_rewards: float) -> bool: |
|
if env.spec.reward_threshold: |
|
return mean_rewards >= env.spec.reward_threshold |
|
if "Pong" in args.task: |
|
return mean_rewards >= 20 |
|
return False |
|
|
|
def save_checkpoint_fn(epoch: int, env_step: int, gradient_step: int) -> str: |
|
|
|
ckpt_path = os.path.join(log_path, "checkpoint.pth") |
|
torch.save({"model": policy.state_dict()}, ckpt_path) |
|
return ckpt_path |
|
|
|
|
|
def watch() -> None: |
|
print("Setup test envs ...") |
|
test_envs.seed(args.seed) |
|
if args.save_buffer_name: |
|
print(f"Generate buffer with size {args.buffer_size}") |
|
buffer = VectorReplayBuffer( |
|
args.buffer_size, |
|
buffer_num=len(test_envs), |
|
ignore_obs_next=True, |
|
save_only_last_obs=True, |
|
stack_num=args.frames_stack, |
|
) |
|
collector = Collector(policy, test_envs, buffer, exploration_noise=True) |
|
result = collector.collect(n_step=args.buffer_size) |
|
print(f"Save buffer into {args.save_buffer_name}") |
|
|
|
buffer.save_hdf5(args.save_buffer_name) |
|
else: |
|
print("Testing agent ...") |
|
test_collector.reset() |
|
result = test_collector.collect(n_episode=args.test_num, render=args.render) |
|
result.pprint_asdict() |
|
|
|
if args.watch: |
|
watch() |
|
sys.exit(0) |
|
|
|
|
|
train_collector.reset() |
|
train_collector.collect(n_step=args.batch_size * args.training_num) |
|
|
|
result = OffpolicyTrainer( |
|
policy=policy, |
|
train_collector=train_collector, |
|
test_collector=test_collector, |
|
max_epoch=args.epoch, |
|
step_per_epoch=args.step_per_epoch, |
|
step_per_collect=args.step_per_collect, |
|
episode_per_test=args.test_num, |
|
batch_size=args.batch_size, |
|
stop_fn=stop_fn, |
|
save_best_fn=save_best_fn, |
|
logger=logger, |
|
update_per_step=args.update_per_step, |
|
test_in_train=False, |
|
resume_from_log=args.resume_id is not None, |
|
save_checkpoint_fn=save_checkpoint_fn, |
|
).run() |
|
|
|
pprint.pprint(result) |
|
watch() |
|
|
|
|
|
if __name__ == "__main__": |
|
test_discrete_sac(get_args()) |
|
|