|
import numpy as np |
|
|
|
from tianshou.data import ReplayBuffer, ReplayBufferManager |
|
from tianshou.data.types import RolloutBatchProtocol |
|
|
|
|
|
class CachedReplayBuffer(ReplayBufferManager): |
|
"""CachedReplayBuffer contains a given main buffer and n cached buffers, ``cached_buffer_num * ReplayBuffer(size=max_episode_length)``. |
|
|
|
The memory layout is: ``| main_buffer | cached_buffers[0] | cached_buffers[1] | ... |
|
| cached_buffers[cached_buffer_num - 1] |``. |
|
|
|
The data is first stored in cached buffers. When an episode is terminated, the data |
|
will move to the main buffer and the corresponding cached buffer will be reset. |
|
|
|
:param main_buffer: the main buffer whose ``.update()`` function |
|
behaves normally. |
|
:param cached_buffer_num: number of ReplayBuffer needs to be created for cached |
|
buffer. |
|
:param max_episode_length: the maximum length of one episode, used in each |
|
cached buffer's maxsize. |
|
|
|
.. seealso:: |
|
|
|
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
main_buffer: ReplayBuffer, |
|
cached_buffer_num: int, |
|
max_episode_length: int, |
|
) -> None: |
|
assert cached_buffer_num > 0 |
|
assert max_episode_length > 0 |
|
assert isinstance(main_buffer, ReplayBuffer) |
|
kwargs = main_buffer.options |
|
buffers = [main_buffer] + [ |
|
ReplayBuffer(max_episode_length, **kwargs) for _ in range(cached_buffer_num) |
|
] |
|
super().__init__(buffer_list=buffers) |
|
self.main_buffer = self.buffers[0] |
|
self.cached_buffers = self.buffers[1:] |
|
self.cached_buffer_num = cached_buffer_num |
|
|
|
def add( |
|
self, |
|
batch: RolloutBatchProtocol, |
|
buffer_ids: np.ndarray | list[int] | None = None, |
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: |
|
"""Add a batch of data into CachedReplayBuffer. |
|
|
|
Each of the data's length (first dimension) must equal to the length of |
|
buffer_ids. By default the buffer_ids is [0, 1, ..., cached_buffer_num - 1]. |
|
|
|
Return (current_index, episode_reward, episode_length, episode_start_index) |
|
with each of the shape (len(buffer_ids), ...), where (current_index[i], |
|
episode_reward[i], episode_length[i], episode_start_index[i]) refers to the |
|
cached_buffer_ids[i]th cached buffer's corresponding episode result. |
|
""" |
|
if buffer_ids is None: |
|
buf_arr = np.arange(1, 1 + self.cached_buffer_num) |
|
else: |
|
buf_arr = np.asarray(buffer_ids) + 1 |
|
ptr, ep_rew, ep_len, ep_idx = super().add(batch, buffer_ids=buf_arr) |
|
|
|
updated_ptr, updated_ep_idx = [], [] |
|
done = np.logical_or(batch.terminated, batch.truncated) |
|
for buffer_idx in buf_arr[done]: |
|
index = self.main_buffer.update(self.buffers[buffer_idx]) |
|
if len(index) == 0: |
|
index = [-1] |
|
updated_ep_idx.append(index[0]) |
|
updated_ptr.append(index[-1]) |
|
self.buffers[buffer_idx].reset() |
|
self._lengths[0] = len(self.main_buffer) |
|
self._lengths[buffer_idx] = 0 |
|
self.last_index[0] = index[-1] |
|
self.last_index[buffer_idx] = self._offset[buffer_idx] |
|
ptr[done] = updated_ptr |
|
ep_idx[done] = updated_ep_idx |
|
return ptr, ep_rew, ep_len, ep_idx |
|
|