sabretoothedhugs's picture
v2
9b19c29
from collections.abc import Callable
from typing import Any, Union, cast
import numpy as np
from tianshou.data import Batch, ReplayBuffer
from tianshou.data.batch import BatchProtocol
from tianshou.data.types import RolloutBatchProtocol
class HERReplayBuffer(ReplayBuffer):
"""Implementation of Hindsight Experience Replay. arXiv:1707.01495.
HERReplayBuffer is to be used with goal-based environment where the
observation is a dictionary with keys ``observation``, ``achieved_goal`` and
``desired_goal``. Currently support only HER's future strategy, online sampling.
:param size: the size of the replay buffer.
:param compute_reward_fn: a function that takes 2 ``np.array`` arguments,
``acheived_goal`` and ``desired_goal``, and returns rewards as ``np.array``.
The two arguments are of shape (batch_size, ...original_shape) and the returned
rewards must be of shape (batch_size,).
:param horizon: the maximum number of steps in an episode.
:param future_k: the 'k' parameter introduced in the paper. In short, there
will be at most k episodes that are re-written for every 1 unaltered episode
during the sampling.
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
"""
def __init__(
self,
size: int,
compute_reward_fn: Callable[[np.ndarray, np.ndarray], np.ndarray],
horizon: int,
future_k: float = 8.0,
**kwargs: Any,
) -> None:
super().__init__(size, **kwargs)
self.horizon = horizon
self.future_p = 1 - 1 / future_k
self.compute_reward_fn = compute_reward_fn
self._original_meta = Batch()
self._altered_indices = np.array([])
def _restore_cache(self) -> None:
"""Write cached original meta back to `self._meta`.
It's called everytime before 'writing', 'sampling' or 'saving' the buffer.
"""
if not hasattr(self, "_altered_indices"):
return
if self._altered_indices.size == 0:
return
self._meta[self._altered_indices] = self._original_meta
# Clean
self._original_meta = Batch()
self._altered_indices = np.array([])
def reset(self, keep_statistics: bool = False) -> None:
self._restore_cache()
return super().reset(keep_statistics)
def save_hdf5(self, path: str, compression: str | None = None) -> None:
self._restore_cache()
return super().save_hdf5(path, compression)
def set_batch(self, batch: RolloutBatchProtocol) -> None:
self._restore_cache()
return super().set_batch(batch)
def update(self, buffer: Union["HERReplayBuffer", "ReplayBuffer"]) -> np.ndarray:
self._restore_cache()
return super().update(buffer)
def add(
self,
batch: RolloutBatchProtocol,
buffer_ids: np.ndarray | list[int] | None = None,
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
self._restore_cache()
return super().add(batch, buffer_ids)
def sample_indices(self, batch_size: int | None) -> np.ndarray:
"""Get a random sample of index with size = batch_size.
Return all available indices in the buffer if batch_size is 0; return an \
empty numpy array if batch_size < 0 or no available index can be sampled. \
Additionally, some episodes of the sampled transitions will be re-written \
according to HER.
"""
self._restore_cache()
indices = super().sample_indices(batch_size=batch_size)
self.rewrite_transitions(indices.copy())
return indices
def rewrite_transitions(self, indices: np.ndarray) -> None:
"""Re-write the goal of some sampled transitions' episodes according to HER.
Currently applies only HER's 'future' strategy. The new goals will be written \
directly to the internal batch data temporarily and will be restored right \
before the next sampling or when using some of the buffer's method (e.g. \
`add`, `save_hdf5`, etc.). This is to make sure that n-step returns \
calculation etc., performs correctly without additional alteration.
"""
if indices.size == 0:
return
# Sort indices keeping chronological order
indices[indices < self._index] += self.maxsize
indices = np.sort(indices)
indices[indices >= self.maxsize] -= self.maxsize
# Construct episode trajectories
indices = [indices]
for _ in range(self.horizon - 1):
indices.append(self.next(indices[-1]))
indices = np.stack(indices)
# Calculate future timestep to use
current = indices[0]
terminal = indices[-1]
episodes_len = (terminal - current + self.maxsize) % self.maxsize
future_offset = np.random.uniform(size=len(indices[0])) * episodes_len
future_offset = np.round(future_offset).astype(int)
future_t = (current + future_offset) % self.maxsize
# Compute indices
# open indices are used to find longest, unique trajectories among
# presented episodes
unique_ep_open_indices = np.sort(np.unique(terminal, return_index=True)[1])
unique_ep_indices = indices[:, unique_ep_open_indices]
# close indices are used to find max future_t among presented episodes
unique_ep_close_indices = np.hstack([(unique_ep_open_indices - 1)[1:], len(terminal) - 1])
# episode indices that will be altered
her_ep_indices = np.random.choice(
len(unique_ep_open_indices),
size=int(len(unique_ep_open_indices) * self.future_p),
replace=False,
)
# Cache original meta
self._altered_indices = unique_ep_indices.copy()
self._original_meta = self._meta[self._altered_indices].copy()
# Copy original obs, ep_rew (and obs_next), and obs of future time step
ep_obs = self[unique_ep_indices].obs
# to satisfy mypy
# TODO: add protocol covering these batches
assert isinstance(ep_obs, BatchProtocol)
ep_rew = self[unique_ep_indices].rew
if self._save_obs_next:
ep_obs_next = self[unique_ep_indices].obs_next
# to satisfy mypy
assert isinstance(ep_obs_next, BatchProtocol)
future_obs = self[future_t[unique_ep_close_indices]].obs_next
else:
future_obs = self[self.next(future_t[unique_ep_close_indices])].obs
future_obs = cast(BatchProtocol, future_obs)
# Re-assign goals and rewards via broadcast assignment
ep_obs.desired_goal[:, her_ep_indices] = future_obs.achieved_goal[None, her_ep_indices]
if self._save_obs_next:
ep_obs_next = cast(BatchProtocol, ep_obs_next)
ep_obs_next.desired_goal[:, her_ep_indices] = future_obs.achieved_goal[
None,
her_ep_indices,
]
ep_rew[:, her_ep_indices] = self._compute_reward(ep_obs_next)[:, her_ep_indices]
else:
tmp_ep_obs_next = self[self.next(unique_ep_indices)].obs
assert isinstance(tmp_ep_obs_next, BatchProtocol)
ep_rew[:, her_ep_indices] = self._compute_reward(tmp_ep_obs_next)[:, her_ep_indices]
# Sanity check
assert ep_obs.desired_goal.shape[:2] == unique_ep_indices.shape
assert ep_obs.achieved_goal.shape[:2] == unique_ep_indices.shape
assert ep_rew.shape == unique_ep_indices.shape
# Re-write meta
assert isinstance(self._meta.obs, BatchProtocol)
self._meta.obs[unique_ep_indices] = ep_obs
if self._save_obs_next:
self._meta.obs_next[unique_ep_indices] = ep_obs_next # type: ignore
self._meta.rew[unique_ep_indices] = ep_rew.astype(np.float32)
def _compute_reward(self, obs: BatchProtocol, lead_dims: int = 2) -> np.ndarray:
lead_shape = obs.observation.shape[:lead_dims]
g = obs.desired_goal.reshape(-1, *obs.desired_goal.shape[lead_dims:])
ag = obs.achieved_goal.reshape(-1, *obs.achieved_goal.shape[lead_dims:])
rewards = self.compute_reward_fn(ag, g)
return rewards.reshape(*lead_shape, *rewards.shape[1:])