|
from typing import Any |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from tianshou.env.utils import gym_new_venv_step_type |
|
from tianshou.env.venvs import GYM_RESERVED_KEYS, BaseVectorEnv |
|
from tianshou.utils import RunningMeanStd |
|
|
|
|
|
class VectorEnvWrapper(BaseVectorEnv): |
|
"""Base class for vectorized environments wrapper.""" |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, venv: BaseVectorEnv) -> None: |
|
self.venv = venv |
|
self.is_async = venv.is_async |
|
|
|
def __len__(self) -> int: |
|
return len(self.venv) |
|
|
|
def __getattribute__(self, key: str) -> Any: |
|
if key in GYM_RESERVED_KEYS: |
|
return getattr(self.venv, key) |
|
return super().__getattribute__(key) |
|
|
|
def get_env_attr( |
|
self, |
|
key: str, |
|
id: int | list[int] | np.ndarray | None = None, |
|
) -> list[Any]: |
|
return self.venv.get_env_attr(key, id) |
|
|
|
def set_env_attr( |
|
self, |
|
key: str, |
|
value: Any, |
|
id: int | list[int] | np.ndarray | None = None, |
|
) -> None: |
|
return self.venv.set_env_attr(key, value, id) |
|
|
|
def reset( |
|
self, |
|
env_id: int | list[int] | np.ndarray | None = None, |
|
**kwargs: Any, |
|
) -> tuple[np.ndarray, np.ndarray]: |
|
return self.venv.reset(env_id, **kwargs) |
|
|
|
def step( |
|
self, |
|
action: np.ndarray | torch.Tensor | None, |
|
id: int | list[int] | np.ndarray | None = None, |
|
) -> gym_new_venv_step_type: |
|
return self.venv.step(action, id) |
|
|
|
def seed(self, seed: int | list[int] | None = None) -> list[list[int] | None]: |
|
return self.venv.seed(seed) |
|
|
|
def render(self, **kwargs: Any) -> list[Any]: |
|
return self.venv.render(**kwargs) |
|
|
|
def close(self) -> None: |
|
self.venv.close() |
|
|
|
|
|
class VectorEnvNormObs(VectorEnvWrapper): |
|
"""An observation normalization wrapper for vectorized environments. |
|
|
|
:param update_obs_rms: whether to update obs_rms. Default to True. |
|
""" |
|
|
|
def __init__(self, venv: BaseVectorEnv, update_obs_rms: bool = True) -> None: |
|
super().__init__(venv) |
|
|
|
self.update_obs_rms = update_obs_rms |
|
self.obs_rms = RunningMeanStd() |
|
|
|
def reset( |
|
self, |
|
env_id: int | list[int] | np.ndarray | None = None, |
|
**kwargs: Any, |
|
) -> tuple[np.ndarray, np.ndarray]: |
|
obs, info = self.venv.reset(env_id, **kwargs) |
|
|
|
if isinstance(obs, tuple): |
|
raise TypeError( |
|
"Tuple observation space is not supported. ", |
|
"Please change it to array or dict space", |
|
) |
|
|
|
if self.obs_rms and self.update_obs_rms: |
|
self.obs_rms.update(obs) |
|
obs = self._norm_obs(obs) |
|
return obs, info |
|
|
|
def step( |
|
self, |
|
action: np.ndarray | torch.Tensor | None, |
|
id: int | list[int] | np.ndarray | None = None, |
|
) -> gym_new_venv_step_type: |
|
step_results = self.venv.step(action, id) |
|
if self.obs_rms and self.update_obs_rms: |
|
self.obs_rms.update(step_results[0]) |
|
return (self._norm_obs(step_results[0]), *step_results[1:]) |
|
|
|
def _norm_obs(self, obs: np.ndarray) -> np.ndarray: |
|
if self.obs_rms: |
|
return self.obs_rms.norm(obs) |
|
return obs |
|
|
|
def set_obs_rms(self, obs_rms: RunningMeanStd) -> None: |
|
"""Set with given observation running mean/std.""" |
|
self.obs_rms = obs_rms |
|
|
|
def get_obs_rms(self) -> RunningMeanStd: |
|
"""Return observation running mean/std.""" |
|
return self.obs_rms |
|
|