|
from abc import ABC, abstractmethod |
|
from collections.abc import Callable |
|
from typing import Any |
|
|
|
import gymnasium as gym |
|
import numpy as np |
|
|
|
from tianshou.env.utils import gym_new_venv_step_type |
|
|
|
|
|
class EnvWorker(ABC): |
|
"""An abstract worker for an environment.""" |
|
|
|
def __init__(self, env_fn: Callable[[], gym.Env]) -> None: |
|
self._env_fn = env_fn |
|
self.is_closed = False |
|
self.result: gym_new_venv_step_type | tuple[np.ndarray, dict] |
|
self.action_space = self.get_env_attr("action_space") |
|
self.is_reset = False |
|
|
|
@abstractmethod |
|
def get_env_attr(self, key: str) -> Any: |
|
pass |
|
|
|
@abstractmethod |
|
def set_env_attr(self, key: str, value: Any) -> None: |
|
pass |
|
|
|
@abstractmethod |
|
def send(self, action: np.ndarray | None) -> None: |
|
"""Send action signal to low-level worker. |
|
|
|
When action is None, it indicates sending "reset" signal; otherwise |
|
it indicates "step" signal. The paired return value from "recv" |
|
function is determined by such kind of different signal. |
|
""" |
|
|
|
def recv(self) -> gym_new_venv_step_type | tuple[np.ndarray, dict]: |
|
"""Receive result from low-level worker. |
|
|
|
If the last "send" function sends a NULL action, it only returns a |
|
single observation; otherwise it returns a tuple of (obs, rew, done, |
|
info) or (obs, rew, terminated, truncated, info), based on whether |
|
the environment is using the old step API or the new one. |
|
""" |
|
return self.result |
|
|
|
@abstractmethod |
|
def reset(self, **kwargs: Any) -> tuple[np.ndarray, dict]: |
|
pass |
|
|
|
def step(self, action: np.ndarray) -> gym_new_venv_step_type: |
|
"""Perform one timestep of the environment's dynamic. |
|
|
|
"send" and "recv" are coupled in sync simulation, so users only call |
|
"step" function. But they can be called separately in async |
|
simulation, i.e. someone calls "send" first, and calls "recv" later. |
|
""" |
|
self.send(action) |
|
return self.recv() |
|
|
|
@staticmethod |
|
def wait( |
|
workers: list["EnvWorker"], |
|
wait_num: int, |
|
timeout: float | None = None, |
|
) -> list["EnvWorker"]: |
|
"""Given a list of workers, return those ready ones.""" |
|
raise NotImplementedError |
|
|
|
def seed(self, seed: int | None = None) -> list[int] | None: |
|
return self.action_space.seed(seed) |
|
|
|
@abstractmethod |
|
def render(self, **kwargs: Any) -> Any: |
|
"""Render the environment.""" |
|
|
|
@abstractmethod |
|
def close_env(self) -> None: |
|
pass |
|
|
|
def close(self) -> None: |
|
if self.is_closed: |
|
return |
|
self.is_closed = True |
|
self.close_env() |
|
|