sabretoothedhugs's picture
v2
9b19c29
from abc import ABC, abstractmethod
from collections.abc import Callable
from typing import Any
import gymnasium as gym
import numpy as np
from tianshou.env.utils import gym_new_venv_step_type
class EnvWorker(ABC):
"""An abstract worker for an environment."""
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
self._env_fn = env_fn
self.is_closed = False
self.result: gym_new_venv_step_type | tuple[np.ndarray, dict]
self.action_space = self.get_env_attr("action_space")
self.is_reset = False
@abstractmethod
def get_env_attr(self, key: str) -> Any:
pass
@abstractmethod
def set_env_attr(self, key: str, value: Any) -> None:
pass
@abstractmethod
def send(self, action: np.ndarray | None) -> None:
"""Send action signal to low-level worker.
When action is None, it indicates sending "reset" signal; otherwise
it indicates "step" signal. The paired return value from "recv"
function is determined by such kind of different signal.
"""
def recv(self) -> gym_new_venv_step_type | tuple[np.ndarray, dict]:
"""Receive result from low-level worker.
If the last "send" function sends a NULL action, it only returns a
single observation; otherwise it returns a tuple of (obs, rew, done,
info) or (obs, rew, terminated, truncated, info), based on whether
the environment is using the old step API or the new one.
"""
return self.result
@abstractmethod
def reset(self, **kwargs: Any) -> tuple[np.ndarray, dict]:
pass
def step(self, action: np.ndarray) -> gym_new_venv_step_type:
"""Perform one timestep of the environment's dynamic.
"send" and "recv" are coupled in sync simulation, so users only call
"step" function. But they can be called separately in async
simulation, i.e. someone calls "send" first, and calls "recv" later.
"""
self.send(action)
return self.recv() # type: ignore
@staticmethod
def wait(
workers: list["EnvWorker"],
wait_num: int,
timeout: float | None = None,
) -> list["EnvWorker"]:
"""Given a list of workers, return those ready ones."""
raise NotImplementedError
def seed(self, seed: int | None = None) -> list[int] | None:
return self.action_space.seed(seed) # issue 299
@abstractmethod
def render(self, **kwargs: Any) -> Any:
"""Render the environment."""
@abstractmethod
def close_env(self) -> None:
pass
def close(self) -> None:
if self.is_closed:
return
self.is_closed = True
self.close_env()